What is...tropical geometry - part 17?

Or: Tropical liner algebra 1 - eigenvalues and graphs

Eigenvalues and eigenvectors

- Above An illustration of classical eigenvalues and eigenvectors
- **Recall** This means $Ax = \lambda \cdot x$, say $\lambda \in \mathbb{R}$
- ▶ The same definition applies for tropical matrices

Adjacency graph

Recall Every matrix corresponds to an oriented graph, its adjacency graph

► There are two examples of this above

► Bigger entries correspond to labeled (=multiple) edges

Oriented cycles and more

Terminology 1 Strongly connected = connected in the oriented sense

Terminology 2 Oriented cycles = cycles in the oriented sense

Above The graph is strongly connected and has plenty of oriented cycles

A tropical matrix with strongly connected adjacency graph has precisely one eigenvalue $\lambda(A)$ and

 $\lambda(A) = minimal normalized length of any directed cycle$

(This means the sum of the labels of the edges divided by the length of the path)

• Example For the matrix below we have $\lambda(A) = 3/2$

▶ Why? There is an oriented cycle of length 2 and sum 3

Linear programming again

▶ Linear program Maximize γ subject to $a_{ij} + v_j \ge \gamma + v_i$ for all $1 \le i, j \le n$

Notation $A = (a_{ij})_{i,j=1}^n$, $v_1, ..., v_n$ are decision variables

• Theorem $\lambda(A)$ coincides with the optimal value of this linear program

Thank you for your attention!

I hope that was of some help.