What is...tropical geometry - part 19?

Or: Tropical linear algebra 3 - tropical matrix powers

Matrices and graphs

- Above "Why graphs and matrices are the same"
- ► Note No connection ↔ zero entry
- ▶ This is just the tip of the iceberg : matrices and graphs are deeply connected

Matrix powers and graphs

- Above The first few matrix powers of M
- Observation (and true) The entries of M^k correspond to # paths of length k
- Question What happens tropically?

Tropical matrix powers and graphs

Slight change No connection $\longleftrightarrow \infty$ entry, and diagonal = 0

- Observation (and true) The entries of M^k correspond to cost of the shortest paths of length $\leq k$
- ► This is like travel cost

A tropical adjacency matrix M satisfies

(i,j)-entry of M^k = value of the cheapest path from i to j

For Tropical adjacency matrix = with ∞ , and 0 on the diagonal

▶ This implies: $M^{k+1} = M^k$ for some k; like an idempotent

Application

Task Find the price of the cheapest flight from A to B

▶ **Preparation** Write down the tropical adjacency matrix *M* of flight costs

Answer The price is the (A,B)-entry of M^k for some k big enough

Thank you for your attention!

I hope that was of some help.