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Where do we want to go?

Fusion reps Fiat reps

rep theory

“categorify”

Group reps Monoid reps

generalize

Fiat mon-
oidal cats

Fusion mon-
oidal cats

Groups l—' Monoids

» Green, Clifford, Munn, Ponizovskii ~19404+4 + many others
Representation theory of monoids

» Goal Find some categorical analog
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Where do we want to go?

Fusion reps

rep theory

“categorify”

. Group reps
generalize

Fiat mon-
oidal cats

Fusion mon-
oidal cats

Groups l—' Monoids

Fiat reps

Monoid reps

“Categorify”
ey

is motivated by

» Green, Clifford, Munn, Ponizovskii ~19404+4 + many others

Representation theory of monoids

» Goal Find some categorical analog
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Where do we want to go?

Fusion reps
rep theory

“categorify”

Fiat reps

Group reps Monoid reps

Fiat mon-
oidal cats

Monoids

» Today Representation theory for monoidal categories

Fusion mon-
oidal cats

> Instead of Zep(G,K) we study Zep(Zep(G,K))
» Examples we discuss Zep(G,K) and & (V®9|d € N) (“diagram cats”)
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Wherd The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co
Categories have finitely many indecomposable objects (up to iso)

Not always, but sometimes categories have dualities * (rigid, pivotal etc.)
Fusion mon- / Fiat mon-
oidal cats oidal cats

Mon0|ds

» Today Representation theory for monoidal categories
> Instead of Zep(G,K) we study Zep(Zep(G,K))

» Examples we discuss Zep(G,K) and & (V®9|d € N) (“diagram cats”)
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Wherd The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co

Categories have finitely many indecomposable objects (up to iso)

Not always, but sometimes categories have dualities * (rigid, pivotal etc.)

7

Fusion m{ Everything has a bicategory version [
oidal caf  but | completely ignore that!

Groups Monoids

» Today Representation theory for monoidal categories

> Instead of Zep(G,K) we study Zep(Zep(G,K))

» Examples we discuss Zep(G,K) and & (V®9|d € N) (“diagram cats”)
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Wher¢

The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co

Categories have finitely many indecomposable objects (up to iso)
Not always, but sometimes categories have dualities * (rigid, pivotal etc.)

7

Fusion m{ Everything has a bicategory version [
oidal ca  but | completely ignore that!

Examples

Vec
Vecg/Vecs for a finite group G/monoid S
Rep(G,C), Z10j(G,K) or #nj(G,K) for a finite group G
Rep(G,K) for a finite group G sometimes works (details in a sec)
ZRep(S,K) for a finite monoid S sometimes works

Categories & (V®9|d € N) with ®-generator V sometimes work (details later)

Quotients of tilting module categories
Projective functor categories 64

Soergel bimodules &#bim for finite Coxeter types

Repri
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps , simple «~ elements
Ay

matter indecomposable «~ compounds

® & o

’ .

Let & = RZep(G,K)

& is monoidal v~

S is K-linear v~

S is additive v~

< is idempotent complete v~
& has fin dim hom spaces v~

vV vV vV vV VvY

& often has infinitely many indecomposable objects

» < has dualities v~
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Finitary/fiat monoidal cats
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° - ©

‘ Reps , simple «~ elements
Ay

matter indecomposable «~ compounds

o & o S0

Let & = Zep(G,K)
& is monoidal v~
S is K-linear v~

S is additive v~

< is idempotent complete v~ finitary

& has fin dim hom spaces v~ -

vV vV vV vV VvY

& often has infinitely many indecomposable objects

» < has dualities v~
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps ’ simple «~ elements
Ay

matter indecomposable «~ compounds

o & o S0

Let & = Zep(S,K)

& is monoidal v~

S is K-linear v~

S is additive v~

< is idempotent complete v~
& has fin dim hom spaces v~

al

vV V. v vV vV vV VY

& has no dualities in general X
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Finitary/fiat monoidal cats

| o
o \Em

1]
Zy .
0
0

> Take G = Z/5Z and K = Fs, then K[G] = K[X]/(X®)
» Rep(G,K) has one simple object Z; =1

» Rep(G,K) has five indecomposable objects = [fiat
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Finitary/fiat monoidal cats

& s
s.(a+1ib) = —a+1b

L selatib)

v  t.(a+ib) =a—1ib

t
7 X Y X ! X Y X
2 @ 4 ° ° ° ® ° °
Z2I+1:.<X.§ o o O\X ,%’ °

» Take G = Z/27Zx7/27Z and K = [y, then K[G] = K[X, Y]/(X?, Y?)
» RZep(G,K) has one simple object Z; = 1

» Zep(G,K) has infinitely many indecomposable objects = ' not fiat
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L. Theorem (Higman ~1954)
Finitarn
Rep(G,K) is fiat if and only if either
(a) char(K) does not divide |G|
or
(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic
VATHIN ° ° ° ° °
V4 TES T [ ° ° [

> Take G = Z/2ZxZ/2Z and K = Ty, then K[G] = K[X, Y]/(X2, Y?)
> Zep(G,K) has one simple object Z; = 1

> Zep(G,K) has infinitely many indecomposable objects = 'not fiat
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. Theorem (Higman ~1954)
Finitarn

Rep(G,K) is fiat if and only if either
(a) char(K) does not divide |G|

or
(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic

Examples and nonexamples

Rep(S3,F2), Zep(Dodd, F2) are fiat

e ey |

Rep(Sa, F2), Zep(Deven, F2) are not fiat

N
°

> Take G =Z
> Zep(G,K) h

(X2, v?)

similar .
Blue circle = cyclic subgroups, green = 2-Sylows not fiat

> Zep(G,K) h
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L. Theorem (Higman ~1954)
Finitar
Rep(G,K) is fiat if and only if either
(a) char(K) does not divide |G|
or
(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic
L ]
VATEN Together with 2ro0j(G,K) and .#nj(G, K) (these are [always fiat )
Higman's theorem provides many examples of fiat categories

V4TS ° ° ° ° °

A Higman theorem for monoids is widely open
but one shouldn't expect it too be very nice, e.g.
Tak T, = End({1, ..., n}) has finite representation type over C < n < 4
» la

O — Z VI ay/] /LJCIIIUJ.[fﬂ2,LIICIIﬂLUJ—ﬂL\,IJ\/\,’I

» Zep(G,K) has one simple object Z; = 1

> Zep(G,K) has infinitely many indecomposable objects = 'not fiat
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps ’ simple «~ elements
Ay

matter indecomposable «~ compounds

® & o

’ .

& is monoidal v~

S is K-linear v~

S is additive v~

< is idempotent complete v~
& has fin dim hom spaces (v~

» & often has infinitely many indecomposable objects !

» & has dualities (v") depends but is easy to check
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Finitary/f

s

Let
S is
S is
S is
S i
< h

vV VvV V. vV VY

Catch These usually have infinitely many indecomposable objects

Almost examples

Temperley—Lieb (TL), Brauer or Deligne categories

C
C

0

)

and other diagram categories in the same spirit

= truncate these appropriately

» & often has infinitely many indecomposable objects |

> & has dualities (v")

pre
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AT Example/Theorem (Alperin, Kovacs ~1979)

“Finite TL", i.e. V any simple of G = SLy(F,«) over characteristic p
S (V®|d eN)is fiat ,eg. p=5 K=TFs, k=2, V = (Fas)*:

[

GModule of dimension 1 over GF(5),

GModule of dimension 4 over GF(5),

GModule of dimension 4 over GF(5)

Godule of dimension 6 over GF(5)

GModule of dimension 8 over GF(5)

Ghodule of dimension 9 over GF(S),

2 2 . Ghodule of dimension 10 over GF(5),
simples in Zep(G,K): ool of Gireion 12 ovr crie)
Giodule of dimension 16 over GF(5),

Godule of dimension 16 over GF(5),

GModule of dimension 20 over GF(5),

GModule of dimension 24 over GF(5),

GModule of dimension 25 over GF(5),

GModule of dimension 30 over GF(5),

Godule of dimension 40 over GF(5)

—
D
—+

i G:=SpecialLinearGroup(2,5°2);
| indecomposables in Zep(G,K): Istyclic(Sylowsubgroup(6,5));
I false

[
| Ghodule of dinension 1 over GF(5),
I

GHodule J of dinension 4 over GF(5),
GHodule of dinension 4 over GF(5),
GHodule of dimension 6 over GF(5),
GHodule of dinension 12 over GF(5)
GHodule of dinension 8 over GF(5),
Giodule of dinension 9 over GF(5)

. . ®d GModule of dimension 16 over GF(5),

indecom posab|es in y( VvV |d c N) Godute of dinension 10 over GE(5),
GHodule of dinension 24 over GF(5)
GHodule of dinension 20 over GF(5)
GModule of dimension 20 over GF(S),
GHodule of dinension 16 over GF(5)
GHodule of dinension 30 over GF(5)
GHodule of dinension 40 over GF(5)
GHodule of dinension 20 over GF(5)
GHodue of dinension 40 over GF(5)
GHodule of dinension 60 over GF(5)
+a few more (45 in total)

vV VvV V. vV VY

v

AR

v

Iroo—oroorrrer T T

of

kS
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Finitary/fiat monoidal cats

Example/Theorem (folklore)

V any 2d simple of a finite group G
F (V29 d € N) is finitary ,
e.g. K=TF,, V the two dim simple of G = Ds:

[
. _ GModule of dimension 1 over GF(2),
sftmples I £ L GModule of dimension 2 over GF(2)
—________________________|]
]

G:=DihedralGroup(6);

indecomposables in Zep(G,K): IsCyclic(Sylowsubgroup(G,2));
false

[
GModule of dimension 1 over GF(2),
indecomposables in y(v@d‘d = N): GModule M of dimension 2 over GF(2),
GModule of dimension 2 over GF(2)

]

» & often has infinitely many indecomposable objects |

> & has dualities (v")
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Finitary/fiat monoidal cats

O
® )
o )

Algebraic modules a la Alperin

provide many examples of finitary/fiat categories

The state of the arts for algebraic modules is roughly the same as for algebraic numbers:
there are some results, but not so many

z w z¥
2 algebraic log3/log2 transcendental | 3 algebraic
2 algebraic ilog3/log2 transcendental | 3 transcendental
e’ transcendental T transcendental | -1 algebraic
e  transcendental 71' transcendental | e™ transcendental
2 transcendental V2 algebraic 4 algebraic
2V2  transcendental 7\/§ algebraic 4*  transcendental

TABLE 1. Possibilities for z* when z or w is transcendental.
In the monoid case next to nothing is known

» & has fin dim hom spaces (

» & often has infinitely many indecomposable objects |

> & has dualities (v")
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Example/Theorem (Craven ~2013)

V any simple of Mi; in characteristic 2
F(V®d € N)is finitary ,
e.g. V the 10 dim simple of G = Mh;:
[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF 2!,

simples in %ep(G,K): GModule of dimension 32 over GF(2),
GModule of dimension 44 over GF(2)
]
indecomposables in Zep(G,K): 6 := sub<sym(11)|(1,10)(2.8)(3,11)(5,7), (1,4,7,6) (2,11,10,9)>;
IsCyclic(SylowSubaroup(G,2)); false
[
GModule of dimension 1 over GF(2),
GModule M of dimension 10 over GF(2),
GModule of dimension 90 over GF(2),
q 8 ®d . GModule of dimension 32 over GF(2),
IndeCOmpOSables In ‘Sﬂ(v |d e I\I) GModule of dimension 96 over GF(2),
GModule of dimension 144 over GF(2),

GModule of dimension 112 over GF(2)
1

- There are many similar results known, but they all look a bit random, e.g.
> Proposition 8.9 Let G be the Held sporadic group He. If p = 2 then a simple module
is algebraic if and only if it is trivial or lies outside the principal block. If p = 3 then
» | asimple module is algebraic if and only if it does not have dimension 6172 or 10879,
and if p =5 then the simple modules with dimension 1, 51, 104, 153, 4116, 4249, and
p o 6528are algebraic.
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

X<, Yed: Ye@/ZX

X<, Ye3IZ:Y eX

X< Y&e3Z,7Z:Y ezX7

X~ Y & (X< Y)A (Y <, X)
X~prY & (XZRrY)A(Y <R X)
X~rY & (X<rRY)A(Y <1r X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» H-cells = intersections of left and right cells

» Slogan Cells measure information loss

Or: Reps of categories of reps October 2022 4/7
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

X<, Yed: Ye@/ZX

X<, Ye3IZ:Y eX

X< Y&e3Z,7Z:Y ezX7

X~ Y & (X< Y)A (Y <, X)
X~prY & (XZRrY)A(Y <R X)
X~rY & (X<rRY)A(Y <1r X)

Lef Green cells in categories
eft, B ={X,Y,Z,...} set of indecomposables of a finitary monoidal category &
> @ = is direct summand of

» Slogan Cells measure information loss
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Cells in monoidal cats

same information

information loss

» Cells given a partial order on inde(.%), in a matrix style fashion

» Get monoidal semicategories &7, S by killing higher order terms
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Cells in monoidal cats

same i

Example (Zep(Ss, C))

Indecomposable objects Z; &2 1 «w [T 1], Zo ¢~ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

1 @E@E: g is in the lowest cell

Only one cell

loss

> Cells given a partial order on inde(), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms

of

Or: Reps of categories of reps
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Cells in monoidal cats

Example (Zep(Ss, C))

Indecomposable objects Z; 2 1 e~ [T 11, Zp ¢ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

1 @E@Eé g is in the lowest cell
same i
Only one cell

W T T TTT e
Example (Zep(G,C))

loss

leZ®Z" = Zis in the lowest cell
Only one cell

» Cells given a partial order on inde(%), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms
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Cells in monoidal cats

same i

Example (Zep(Ss, C))

Indecomposable objects Z; 2 1 e~ [T 11, Zp ¢ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

1 @E@Eé g is in the lowest cell

Only one cell

loss

| i

Example (Zep(G,C))

leZ®Z" = Zis in the lowest cell

Only one cell

» Cells given a partid

Example (semisimpie + duality

leZ®Z" = Zis in the lowest cell

Only one cell

le fashion

AY

» Get monoidal semicategories #7, S by killing higher order terms

pre i of

Or: Reps of categories of reps
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A P | s

Cells in my
Example (& (V®9|d € N) for the 2d simple S; rep over IF,)

Indecomposable objects Z; =2 1 «w [T, Zp < EP Zz = P(1)
EP@EP 27382
EP ® 7= EP ® 4
zez=2HoH]

same Two cells

T Lo,z Sy =N

Ib 1 S = Vec

=

/

\

> Cells given a partial order on inde(), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms

loss
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PN | s

Cells in m

same

EP@EP%Za@&
EP®Z3 %EP@Za
zezZ=HaoH

Example (< (V®?|d € N) for the 2d simple S; rep over F»)

Indecomposable objects Z; 22 1« [TT1, Z «~ H-, Z3 = P(1)

Two cells
T Lo,z Sy =N
Ib 1 S = Vec

In general, for & C Zep(G,K)

» Cells given a partial order on inde(%), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms

pre i of

the top J cell is the cell of projectives

Or: Reps

of categories of reps

loss

October 2022



iel

1 s

Cells in m

same

EP@EP%Za@&
EP®Z3 ':“E}]@Za
Z3® Z3 gEP@EP

Two cells

N Zz, Z3 Sy =277
Ib 1 I = Vec

Example (< (V®?|d € N) for the 2d simple S; rep over F»)

Indecomposable objects Z; 22 1« [TT1, Z «~ H-, Z3 = P(1)

loss

» Cells given a

I

In general, for & C ﬂep(G,K)

€es

the top J cell is the cell of projectiv

Warnihg

For & C Zep(S,K)

the top J cell is usually not the cell of projectives

Dualities are helpful

ion

» Get monoidal semicategories #7, 4 by killing higher order terms

pre i of
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Cells in monoidal cats

Example/theorem (folklore)

S (V®9|d € N) for “finite TL" over F
There are (k+ 1) cells
same i T Zok 15y Lopk—a Sn = Very
loss
I3 Z3 15y Lo S = Verps
T2 Zyp g, 23 o I = Verp
S Zp—15s L2 H = Verp
Ib Zo=1,..,2,> I = Ver

where ¥er is the semisimplification of SLy(IF,) tilting modules
and the other 4, are “higher” Verlinde cats

» Cells given a partial order on inde(%), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms
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Cells in monoidal cats

‘WHHHIT

Example (projective functors)

| A some reasonable algebra, 1 = e; + e primitive orthogonal idempotents
%64 finitary monoidal category of projective functors + id functor

There are 2 cells

Ae; ® e1A  Ae ® A
Aer ® e1A | A ® eA

Jb A Sy = Z(A-Mod)

Jt Sy =7

> Cells given a partial order on inde(), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms
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Cells in monoidal cats

T

Example (Soergel bimodules)

&bim is fiat monoidal category for finite Coxeter type

Cells = p cells
sarf

For type B> one has e.g.
Two Bi212 S Zgeg=0 Vec

Bi1, B2 B2
B> B>, Bo12

N/ By Sy =2 Vec PNOL2

TIm

S Zdeg=0 VeCy 2z,

12}

> Cells given a partial order on inde(), in a matrix style fashion

» Get monoidal semicategories #7, S by killing higher order terms
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Reps of monoidal cats

Frobenius: act on linear spaces

her dio Darstellung der endlichen Gruppen
durch lineare Substitutionen.

Von G. FROBENIUS.

Schur: act on projective spaces

Uber die Darstellung der endlichen Gruppen

durch gebrochene lineare Substitutionen.
(Von Herrn J. Sohur in Beglin.)

Varying the source/target gives slightly different theories

» Start with examples |In a sec
» Choose the type of categories you want to represent Finitary/fiat monoidal

» Choose the type of categories you want as a target | Finitary

of i i Or: Reps of categories of reps October 2022 5/7




c nf mananidal catc

R\a

Some flavors, varying source/target

Categorical reps of groups (subfactors, fusion cats, etc.)
a la Jones, Ocneanu, Popa, others ~1990

Categorical reps of Lie groups/Lie algebras
a la Chuang—Rouquier, Khovanov-Lauda, others ~2000

Categorical reps of algebras ( abelian , tensor cats, etc.)
a la Etingof, Nikshych, Ostrik, others ~2000

Categorical reps of monoids/algebras (fadditive , finitary/fiat monoidal cats, etc.)

a la Mazorchuk, Miemietz, others ~2010

» Start with examples |In a sec

» Choose the type of categories you want to represent Finitary/fiat monoidal

» Choose the type of categories you want as a target | Finitary

» Build a theory |Depends crucially on the setting

pre

of
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Reps of monoidal cats

> Let & = Rep(G,K)
» The regular cat module M: & — &nd(S):

M— M@ _

l i

N——N®_
» The decategorification is an ' N -module
Example (G = 55,K = C)

221D, ZeH Zef
01

1 00 0 0 01
M(Z)] e~ [0 1 0], [MZL)]e~[1 1 1|, [M(ZL)]~ |0 1 0
0 0 1 1 0 1 0 0

0

pi i of i i Or: Reps of categories of reps
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Reps of monoidal cats

» Let K C G be a subgroup
» Zep(K,K) is a cat module of Zep(G,K) via
M(K,1) = Resg @ _: Rep(G,K) — énd(Zep(K,K)),
M———— Resg (M) ® _

fl J{Resﬁ(f)@

N——— Res(N) ®

» The decategorifications are [N -modules
Example (G = 55, K = 5, K=C,M = M(K, 1))

oo—m, H-meH E%B
M~ (g 7). M- (3 7). M- (] )

pi of Or: Reps of categories of reps October 2022
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Reps of monoidal cats

» Let ¢ € H?(K,C*), and M(K, ¢) be the category of projective K-modules
with Schur multiplier ¢, i.e. a vector spaces V with p: K — End(V) such that

p(g)p(h) = ¢(g, h)p(gh), for all g, h € K
» Note that M(K,1) = Rep(K) and
®: M(K, 9) KM(K, ) = M(K, 1)
» M(K, ) is also a cat module of &:

RestXId
—_—

Rep(G,C) K M(K, ) Rep(K) X M(K, ) 2, M(K, )

» The decategorifications are [N -modules — the same ones from before!

pi ions of i i Or: Reps of categories of reps October 2022 5/7



Reps of monoidal cats

» Let ¢ € H?(K,C*), and M(K, ¢) be the category of projective K-modules
with Sc M(K, ¢) are solutions to equations on the Grothendieck level ) such that

and
the categorical level

» Note that M(K,1) = Rep(K) and

®: M(K, ¢) KM(K, ¥) = M(K, 1))
> M(K, ) is also a cat module of &:

ResEXId
—_—

Rep(G,C) K M(K, ¢) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are /N -modules — the same ones from before!
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Reps of monoidal cats

» Let p € H?(K,C*), and M(K, ) be the category of projective K-modules

with ScIM(K, ¢) are solutions to equations on the Grothendieck level ) such that

and
the categorical level

» Note that M

(K 1) — RPan( k) and

Rep(G

» The decateg]

Goal
Find some setting where M(K| o) naturally fit into

Theory
I
Rep(G,C)

M(K,p) | More.

2 M(K, )

m before!

Or: Reps of categories of reps
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Reps of monoidal cats Source/target

) | want finitary/fiat categories to act|
> Let ¢ € H(K,C")| My target categories are finitary [Projective K-modules
with Schur multiplier @, 1.e. a vector spaces V with p: K — End(V) such that

p(g)p(h) = (g, h)p(gh), for all g, h € K
» Note that M(K,1) = Rep(K) and
&1 M(K, ) EM(K, ) > M(K, 1)
> M(K, ) is also a cat module of &:

ResEXId
—_—

Rep(G,C) X M(K, o) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are /N -modules — the same ones from before!
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Reps of monoidal cats Source/target

) | want finitary/fiat categories to act
> Let pe H (K C*) My target categories are finitary P"OJGCUVe K-modules

Wi 1 L 1 X T Fal 1/ AY Ch that
Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» Note that M(K,1) = Rep(K) and

®: M(K, ) XM(K, ) = M(K, )
> M(K, ) is also a cat module of &:

Resﬁ&ld
—_—

Rep(G,C) K M(K, ¢) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are /N -modules — the same ones from before!
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Reps of monoidal cats Source/target

5 | want finitary/fiat categories to act
> Letpe H (K C*) My target categories are finitary PVOJGCUVe K-modules

fal L WA WA

wit—" * i ch that
Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» No Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

> M(K, ) is also a cat module of &:

Resﬁ&ld
—_—

Rep(G,C) B M(K, ) Rep(K) B M(K,¢) = M(K, ¢)

» The decategorifications are /N -modules — the same ones from before!

pi ions of i i Or: Reps of categories of reps October 2022 5/7



Reps of monoidal cats Source/target

| want finitary/fiat categories to act

> Let p € H2(K C*) My target categories are finitary F)rC)JeCt'Ve K-modules

o~

fal L WA WA

Wi

Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» No

Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

ch that

» M

> T

Example (Zep(Ss,C) and M = M(S3, ¢))

M is transitive because T = Z; @ Z> @© Z3 has a connected action matrix
1 1 1
Tew |1 2 1] e
1 1 1

of i i Or: Reps of categories of reps October 2022
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Reps of monoidal cats Source/target

| want finitary/fiat categories to act

> Let p € H2(K C*) My target categories are finitary PVOJeCt'Ve K-modules

o~ T T P XL WA WA

Wi

» No

Decat

M is called transitive if it is nonzero and is generated by any nonzero X

Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

ch that

» M

> T

Example (Zep(Ss,C) and M = M(S3, ¢))
M is transitive because T = Z; ® Z» @ Z3 has a connected action matrix
1 1 1
Tew |1 2 1] e
1 1 1

Example (Zep(Ss, C) and M = M(S3, ¢))

M is simple because its transitive and hom spaces are boring

pre

of i i Or: Reps of categories of reps October 2022
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Reps Of maonnidal cate
Theorem (Mazorchuk—Miemietz ~2014)
» Let In the correct framework odules
witHcat reps satisfy a Jordan—Hélder theorem wrt simple cat reps|c |- that
o albh) — Ala PYalah) far All o h c K
Goal
For fixed &, find the periodic table of simple cat reps
OIIBITh CUCTEMBI 3JIEMEHTOB'D, G;?.“a‘;*“ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Li=7

Tiss0  Zr=90  ?=180.

Nb=94  Tasl
2
6.6 Os=199. 3
Ag=108 Hg=200.
ca-tiz 4
Ur=116 Aus197?
5
S| 2 Bi=210? 5
Te=1287
I-127 6
3 Ti-204.
Ba=137 Pb=207. 7

?In=75 Th=118?

. Memenbers.

October 2022

of Or: Reps of categories of reps
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Reps Theorem (Ocneanu ~1990, folklore)

Completeness

> All simples of Zep(G, C) are of the form M(K, ¢). les
n that

We have M(K, ¢) = M(K’, ') < the subgroups and cocycles are conjugate
P TPUT] = P85 TP BT, ToT am g5 T v

» Note that M(K,1) = Rep(K) and
®: M(K, ¢) KM(K, ¥) = M(K, 1))
> M(K, ) is also a cat module of &:

ResEXId
—_—

Rep(G,C) X M(K, o) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are /N -modules — the same ones from before!

of i i Or: Reps of categories of reps October 2022 5/7




Reps

Theorem (Ocneanu ~1990, folklore)

Completeness

All simples of Zep(G, C) are of the form M(K, ).

Non-redundancy

We have M(K, ¢) = M(K’, ') < the subgroups and cocycles are conjugate

les
h that

PUE TP — OB, TTJOVETT],

TOUT diT B, 7T T T\

» Nof

> M(

» Thg

Example (G = Sz at the top, G = S; at the bottom)

K 1 | Z)2Z | Z/3Z | S3

# 1 1 1 1

H? 1 1 1 1

rk 1 2 3 3
K| 1 |zpz| 232|282 2222 S| D | As S
#01] 2 1 1 2 1] 1 1 1
K|l 1| 1 1 1 7/27. | 1 | 2/22 | 2/2Z | 7./2Z
k|| 1] 2 3 4 41 | 3| 52 | 43 | 53

e!

pre

of

Or: Reps of categories of reps
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Reps ¢

» Lg
w

» M

Example/theorem (Etingof, Ostrik ~2003)

The Hopf algebra T = (g, z|g" =1,z" =0, gz = (zg)

for a primitive complex nth root of unity ¢ € C

T is the Taft algebra

Rep(T,C) is fiat monoidal with two cells

Rep(T,C) has infinitely many simple reps

but only finitely many Grothendieck classes of simple reps

There are infinity many twists of the actions

3 3 Qpp
(\) (\) O A, o b
SRS

= A
A oo B LA
§°J.f qlcb ?cé\z &/A)"\ C(L!:')I}P
2y AR 3
AvCEDE

Hules
ch that

Repri

of

Or: Reps of categories of reps
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Cells and reps of monoidal cats

Clifford, Munn, Ponizovskii ~19404++ | H-reduction
There is a one-to-one correspondence

Simples With onhe-to-one Simples Of (any)

—
apex J(e) H(e) C J(e)
Reps of monoids are controlled by #(e) cells

» We already have cell theory in monoidal cats

» Goal Find an H-reduction in the monoidal setup

pre ions of i i Or: Reps of categories of reps October 2022 6/7



Cells and rep Duflo involution

. D = D(L) is Duflo if it satisfies the universal property:
Clifford, Mun 3 v: D — 1 such that
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

Sif “Duflo involution = nonnegative pseudo idempotent”
Having a Duflo involution implies that £ has a

a

nonnegative pseudo idempotent

= coefficients from N wrt the basis of classes of indecomposables

Reps of monoids are controlled by #(e) cells

» We already have cell theory in monoidal cats

» Goal Find an H-reduction in the monoidal setup

pre ions of i i Or: Reps of categories of reps October 2022



Cells and rep

Clifford, Mun
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

Duflo involution

D = D(L) is Duflo if it satisfies the universal property:

3 ~v: D — 1 such that

SIf
a

“Duflo involution = nonnegative pseudo idempotent”

Having a Duflo involution implies that £ has a

nonnegative pseudo idempotent

= coefficients from N wrt the basis of classes of indecomposables

R Example (Zep(G,C)) I
€PS O The unique Duflo involution is 1 ) cells
» We already have cell theory in monoidal cats
» Goal Find an H-reduction in the monoidal setup
Or: Reps of categories of reps October 2022

pre i of



Cells and rep

Clifford, Mun
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

D = D(L) is Duflo if it satisfies the universal property:

Duflo involution

3 ~v: D — 1 such that

SIf
a

= coefficients from N wrt the basis of classes of indecomposables

“Duflo involution = nonnegative pseudo idempotent”

Having a Duflo involution implies that £ has a

nonnegative pseudo idempotent

Reps o

Example (Zep(G,C))

The unique Duflo involution is 1

e) cells

» \W¢g pseudo idempotents (left) and nonnegative pseudo idempotent (right):

» Gq

Example (&bim of dihedral type, n odd)

b17b1217 cso
b217b21217 0o 0o

Duse

bia, b1212,- .- by, biap, ...

by

b2762127--- 521.1)2121....

Dy

612- [)1212. .

va b2127 e
by

pre

of

Or: Reps of categories of reps
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Cells and reps of monoidal cats

1~ 1ina0 1

Clifford, Munr
There is a one-

simpl
apeX
» We alread)
» Goal Fin

Example/theorem (folkl(;re)

S (V®9|d € N) for “finite TL" over F

Tt

T3
T2

Ji
Ib

The Steinberg modules Z,;_; are the Duflo involutions

There are (k + 1) cells

Zok 15y Lopk—a S = Very

o
Zp 1y Zp_y I =Very
Zp2_1, sy Zp3_2 S = “I/erpz
Zp—l:"-yzp272 yH = Verp

Z():]l,...,zpfz y’H %“Ver

any)

((e)

pre i of

Or: Reps of categories of reps
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Cells and reps of monoidal cats

In spirit of Clifford, Munn, Ponizovskii ~1940-+ | H-reduction
There is a one-to-one correspondence (currently only proven in the fiat case)

simples with] one-to-one [ Simples of

—
apex J 5Ly
Reps are controlled by the %, categories

» Each simple has a unique maximal J where having a pseudo idempotent is
replaced by Duflo involutions ' Apex

» This implies (smod means the category of simples):

&-smod 7 ~ F-smod

pre ions of i i Or: Reps of categories of reps October 2022 6/7



Cells and reps

f monoidal cats

In spirit of CIiff
There is a one-tq

Sim

q

» Each simple
replaced by

» This implies|

This is like one matrix entry determines the matrix!

pick ————— F

pick —> il

pick ——

[

pick

N

\/

pick ——— W

bn
e fiat case)

of

idempotent is

of

&-smod 7 ~ F-smod

Or: Reps of categories of reps
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Cells and reps of monoidal cats

Example (Zep(G,C))

In spi| H-reduction is not really a reduction and we need Ocneanu’s classification
There is a one-to-one correspondence (currently only proven in the fiat case)

simples with] one-to-one [ Simples of

>
apex J 52y
Reps are controlled by the % categories

» Each simple has a unique maximal J where having a pseudo idempotent is
replaced by Duflo involutions ' Apex

> This implies (smod means the category of simples):

&-smod 7 ~ F-smod

of i i Or: Reps of categories of reps October 2022



Cells and reps of monoidal cats

Example (Zep(G,C))

In spi| H-reduction is not really a reduction and we need Ocneanu’s classification
There is a one-to-one correspondence (currently only proven in the fiat case)

Example (& bim)
H-reduction reduces the classification problem a lot
but one needs extra work to complete it (the S are complicated)

933 | 333 | 434 | 531 | 231 type F4
333 | 533 | 43,4 | 231 | 531
443 | 443 | 924 | 641 | 641 |, 53,3 Dy Z%ep(54)
513213614 |91 ]311
213 | 51,3 | 614|311 | 911

310,10 | 250,10 | 120,10 type E6
210,50 | 950,50 | 320,50 |; 310,10 Dy 2ggep(SS)

110,20 | 350,20 | 620,20

F-smod 7 ~ F-smod

pi ions of i i Or: Reps of categories of reps October 2022 6/7



Whare do we want to go7

rep theary

categorify

[ -
e @O ©°

L J ”‘ﬂ:’ e
® & o o

R )

> Green, Cifrd, Munn, Ponizousks ~1040-+ -+ many others

Rovocmsion iy f () s
N T——

el n moncidl cats

X< Yo 32 ¥ /X
X< Yoy eX

X €Y 0 3,2 Y €7X7
XY 6 (X< Y)A(Y <0 X)
XY o (X <0 V) A(Y <0 X)
X~ Y & (X < V)A(Y < X)

Lo, right and e sided ol (3 k. L R and el cuivalnce clsses

N E——————

[ prre—————

There is still much to do...

> 5 s moncidsl v

Kol

> s sditve

.y v

b 5 has s dim hom spces

> oftn has nfiitely many indecompasable cbjects |
> 5 bas daitis

ol n moncidl cats

same inermation ———|
ntcrmation s

> Calls gen 3 partil crdr o inde( ), in 3 mtie syl fahion

T T T
P65 o R st I
Op——)

[ chc(9 = i 1 he Syt s o G v ]

Fini

R ), RO )
7 e s P A
o °
.| ool /eeodo 5
Zu o & - L2
RS ), Rep Do ) s
A o

> T G-
)

> #o(G.K)

Reps of monoidal cats

Frobenus act on lner spaces

Schur:act on eojcive spaces

o 4 Dl e clicen Grepee

Varying the sourcearge gves sightly dierent thesies

> tart with cramies [HERE

» Choose the tye f cotagries you van 3 » e [

> Gt o sictegores . b il Nger rder e > Bt 3 hry
ot nd eps of moneidl s <

I st o G, Mann, Poizos 1940+ [EGRHRH o s o

Thre - ne.to0ne carmponderce ey ny povn i the o ) e k)

simples with oneto-ong [ Simples of sinj of
(onatorons,
apex J I
> Exch s b 3 i sl vher i 3 oo dempornt s > Exch s empaen 5
etcd by D imokions el ]
S ——— > T e
P —

Or: Reps of categories of reps
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Whare do we want to go7

rep theary

categorify

Finitary ot moneidal cats

e ° 00

P ot

R )
7 s moncidsl v
# i Kb v
7 s sdditve <
v v

> Green, Cifrd, Munn, Ponizousks ~1040-+ -+ many others

Rovocmsion iy f () s
N T——

el n moncidl cats

X< Yo 32 ¥ /X
X< Yoy eX

X €Y 0 3,2 Y €7X7
XY 6 (X< Y)A(Y <0 X)
XY o (X <0 V) A(Y <0 X)
X~ Y & (X < V)A(Y < X)

Lo, right and e sided ol (3 k. L R and el cuivalnce clsses

N E——————

[ prre—————

b i dim o spaces <~

> oftn has nfiitely many indecompasable cbjects |
> 5 bas daitis

ol n moncidl cats

same inermation ———|
ntcrmation s

> Calls gen 3 partil crdr o inde( ), in 3 mtie syl fahion
> et monoidalsemicaegores 7. by illng ighr xder s

el and reps of monoidal cats

Tove G
RerlG.5) i ot [HBRGRH itvr

O] )t o 1
[ = p s 1 e S v f G e e

Fini

R ), RO )
7 e s P A
o
.| ool /eeodo 5
Zu o & - L2

RS ), Rep Do ) s
A o

> T G-
)

> #o(G.K)

Reps of monoidal cats

Frobenus act on lner spaces

Schur:act on eojcive spaces

o 4 Dl e clicen Grepee

Varying the sourcearge gves sightly dierent thesies

> tart with cramies [HERE

» Choose the tye f cotagries you van 3 » e [

o st o Clfn, Mnn, Pz ~1040++ [ERGRHRR]
Tor ot ome campandanc (caraty s rown  che ot )

simples with one.o-ong [ Simples of
(onatorons,
apex J I

> Exchsimple has 3 nique masinal 7 where haing 3 pseudo dempotent s

eplced by Dot involsions Apex
> i imples (smod means the category of simples)
Sty = sl

Thanks for your attention!

Or: Reps of categories of reps

> B 3 they
<
o spet of i
hare 3 ne- Fat case)

{sin

> Exchsimpid dempotent s
eplced by
» s imples
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