

Computer algebra

▶ Equations are everywhere : differential equations, linear or polynomial

equations or inequalities, recurrences, equations in groups, algebras or
categories, tensor equations etc.

▶ There are two ways of solving such equations: approximately or exactly

▶ Oversimplified, numerical analysis studies efficient ways to get approximate

solutions; computer algebra wants exact solutions

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Equations are everywhere : differential equations, linear or polynomial

equations or inequalities, recurrences, equations in groups, algebras or
categories, tensor equations etc.

▶ There are two ways of solving such equations: approximately or exactly

▶ Oversimplified, numerical analysis studies efficient ways to get approximate

solutions; computer algebra wants exact solutions

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

chair:

one boat:

▶ C6H12 occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

▶ Chair occurs far more frequently than the boats

▶ Chair is stiff while the boats can twist into one another

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

chair:

one boat:

▶ C6H12 occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

▶ Chair occurs far more frequently than the boats

▶ Chair is stiff while the boats can twist into one another

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Fast multiplication

▶ Given two polynomials f and g of degree < n; we want fg

▶ Classical polynomial multiplication needs n2 multiplications and (n − 1)2

additions; thus mult(poly) ∈ O(n2)

▶ It doesn’t appear that we can do faster

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

▶ Karatsuba ∼1960 It gets faster!

▶ Reduce multiplication cost even when potentially increasing addition cost

▶ Second, apply divide-and-conquer

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

▶ Karatsuba ∼1960 It gets faster!

▶ Reduce multiplication cost even when potentially increasing addition cost

▶ Second, apply divide-and-conquer

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Discrete and fast Fourier transform

▶ Assume that there is an operation DFTω such that:

fg = DFT−1
ω

(
DFTω(f)DFTω(g)

)

with DFTω and DFT−1
ω and DFTω(f)DFTω(g) being cheap

▶ Then compute fg for polynomials f and g is “cheap”

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

▶ In the following in need primitive roots of unity ω in some field R

▶ You can always assume R = C and ω = exp(2πk/n)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

The R-linear map

DFTω(f) =
(
1, f (ω), f (ω2), ..., f (ωn−1)

)

that evaluates a polynomial at ωi is called the Discrete Fourier transform (DFT)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

The R-linear map

DFTω(f) =
(
1, f (ω), f (ω2), ..., f (ωn−1)

)

that evaluates a polynomial at ωi is called the Discrete Fourier transform (DFT)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

The R-linear map

DFTω(f) =
(
1, f (ω), f (ω2), ..., f (ωn−1)

)

that evaluates a polynomial at ωi is called the Discrete Fourier transform (DFT)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Cyclic convolution of f = fn−1x
n−1 + ... and g = gn−1x

n−1 + ... is

h = f ∗n g =
∑

0≤l<nhlx
l , hl =

∑
j+k≡l mod nfjgk

We see in a second why this is cyclic

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Cyclic convolution of f = fn−1x
n−1 + ... and g = gn−1x

n−1 + ... is

h = f ∗n g =
∑

0≤l<nhlx
l , hl =

∑
j+k≡l mod nfjgk

We see in a second why this is cyclic

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Example Take f = x3 + 1 and g = 2x3 + 3x2 + x + 1

fg = 2x6 + 3x5 + x4 + 3x3 + 3x2 + x + 1

= (2x2 + 3x + 1)(x4 − 1) + 3x3 + 5x2 + 4x + 2 ≡ f ∗4 g mod (x4 − 1)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Example Take f = x3 + 1 and g = 2x3 + 3x2 + x + 1

fg = 2x6 + 3x5 + x4 + 3x3 + 3x2 + x + 1

= (2x2 + 3x + 1)(x4 − 1) + 3x3 + 5x2 + 4x + 2 ≡ f ∗4 g mod (x4 − 1)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Final lemma we need

DFTω(f ∗n g) = DFTω(f) ·pointwise DFTω(g)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Final lemma we need

DFTω(f ∗n g) = DFTω(f) ·pointwise DFTω(g)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

Final lemma we need

DFTω(f ∗n g) = DFTω(f) ·pointwise DFTω(g)

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

What is FFT in this context?

▶ Assume n = 2k and note that, using Euclid’s algorithm, writing

f = q0(x
n/2 − 1) + r0 = q1(x

n/2 + 1) + r1 gives

f (ωeven) = r0(ω
even) , f (ωodd) = r1(ω

odd)

▶ Writing r1()∗ = r1(ω) we can use divide-and-conquer since ω2 is a primitive
(n/2)th root of unity:

r0(ω
even) and r∗1 (ω

even) are DFTs of order n/2 ⇒make recursive call

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

What is FFT in this context?

▶ Assume n = 2k and note that, using Euclid’s algorithm, writing

f = q0(x
n/2 − 1) + r0 = q1(x

n/2 + 1) + r1 gives

f (ωeven) = r0(ω
even) , f (ωodd) = r1(ω

odd)

▶ Writing r1()∗ = r1(ω) we can use divide-and-conquer since ω2 is a primitive
(n/2)th root of unity:

r0(ω
even) and r∗1 (ω

even) are DFTs of order n/2 ⇒make recursive call

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Computer algebra

▶ Equations are everywhere : differential equations, linear or polynomial

equations or inequalities, recurrences, equations in groups, algebras or
categories, tensor equations etc.

▶ There are two ways of solving such equations: approximately or exactly

▶ Oversimplified, numerical analysis studies efficient ways to get approximate

solutions; computer algebra wants exact solutions

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

chair:

one boat:

▶ C6H12 occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

▶ Chair occurs far more frequently than the boats

▶ Chair is stiff while the boats can twist into one another

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Fast multiplication

▶ Given two polynomials f and g of degree < n; we want fg

▶ Classical polynomial multiplication needs n2 multiplications and (n − 1)2

additions; thus mult(poly) ∈ O(n2)

▶ It doesn’t appear that we can do faster

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Discrete and fast Fourier transform

Cyclic convolution of f = fn−1x
n−1 + ... and g = gn−1x

n−1 + ... is

h = f ∗n g =
∑

0≤l<nhlx
l , hl =

∑
j+k≡l mod nfjgk

We see in a second why this is cyclic

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

What is FFT in this context?

▶ Assume n = 2k and note that, using Euclid’s algorithm, writing

f = q0(x
n/2 − 1) + r0 = q1(x

n/2 + 1) + r1 gives

f (ωeven) = r0(ω
even) , f (ωodd) = r1(ω

odd)

▶ Writing r1()∗ = r1(ω) we can use divide-and-conquer since ω2 is a primitive
(n/2)th root of unity:

r0(ω
even) and r∗1 (ω

even) are DFTs of order n/2 ⇒make recursive call

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

There is still much to do...

Thanks for your attention!

A primer on computer algebra Or: Faster than expected April 2023 5 / 5

Computer algebra

▶ Equations are everywhere : differential equations, linear or polynomial

equations or inequalities, recurrences, equations in groups, algebras or
categories, tensor equations etc.

▶ There are two ways of solving such equations: approximately or exactly

▶ Oversimplified, numerical analysis studies efficient ways to get approximate

solutions; computer algebra wants exact solutions

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

chair:

one boat:

▶ C6H12 occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

▶ Chair occurs far more frequently than the boats

▶ Chair is stiff while the boats can twist into one another

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ They then modeled the bods as vectors ai and ai ⋆ aj=inner product

▶ Model Sij = ai ⋆ aj as variables

▶ One gets polynomial variables subject to the relations above ⇒ get solution
via Gröbner bases

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

To get started, an example from chemistry

Watch out for three (very typical but usually highly nontrivial) steps:

▶ create a mathematical model

▶ “solve” the model (enter e.g. computer algebra)

▶ interpret the solution

We will see C6H12 next, so here it is:

Based on a conjecture of Sachse ∼1890

and a solution by Levelt ∼1997

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach

This happened here as the first solution attempt was not helpful

One gets that the inflexible solution chair is an isolated point
while the boats lie on a curve:

Chair won’t move

and boats can be twisted

when build from tubes

Gröbner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

What we are using throughout is worst-case-analysis using:

f ∈ O(g) :

Careful This is different from:

▶ Average-case-analysis

▶ Computational implications due to overhead (≈ the part before n0)

A Gröbner basis of an ideal I ⊂ R[X1, ...,Xn] and a monomial order
is a set G ⊂ I such that ⟨lt(G)⟩ = ⟨lt(I)⟩; lt=leading term

Theorem (Buchberger ∼1965) Gröbner bases exist
can be computed algorithmically

and can be used to solve:

▶ ideal membership
▶ ideal containment

▶ properties of V (I), e.g. V (I) = ∅ ⇔ G = {1}

Problem Gröbner ∈ O(poly in d2n) for d=largest degree

Definition (Alperin, Kovács ∼1979)

V a rep of a finite group is called algebraic if

∃ polynomial f ∈ N[X] such that f ([V]) = 0
equivalently {V⊗d |d ∈ N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

Success A computer can check that for you (Craven ∼2015)

V any simple of G = SL2(Fpk) over characteristic p is algebraic

e.g. p = 5, K = F5, k = 2, V = (F25)
2:

simples in Rep(G ,K):

indecomposables in Rep(G ,K):

indecomposables in {V⊗d |d ∈ N}:

Failure But what if the program does not hold? (Craven ∼2015)

V = 4d natural rep of G = SP4(Fpk) over Fpk is maybe algebraic

For all other V = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

The computational complexity grows too fast

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 10-min-code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here for P(χ(g) = 0)

but the data is not good enough for P(χ(C) = 0)

A primer on computer algebra Or: Faster than expected April 2023 2 / 5

Fast multiplication

▶ Given two polynomials f and g of degree < n; we want fg

▶ Classical polynomial multiplication needs n2 multiplications and (n − 1)2

additions; thus mult(poly) ∈ O(n2)

▶ It doesn’t appear that we can do faster

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

Example

f = g = x3 + x2 + x + 1 is equal to F1 + F0 = (x + 1)x2 + x + 1
F 2
0 = F 2

1 = (x + 1)2 and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4− 1)2 = 25 ops

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Fast multiplication

k = 2:

Replace xk by e.g. 2k and do the same as before

▶ Karatsuba ∼1960 Using k-adic expansion, this works for numbers as well

▶ Theorem (Karatsuba ∼1960) For n = 2k (n=#digits) we have mult ∈ O(n1.59)

▶ Multiplication is everywhere so this is fabulous

We compute ac, bd , u = (a+ b)(c + d), v = ac + bd , u − v
with 3 multiplications and 4 additions = 7 operations

The total has increased, but a recursive application will drastically reduce the overall cost

Upshot We only have 3 multiplications not 4

This applies recursively , so we actually save a lot:

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3); always: log = log2)

There is also a version for general n but the analysis is somewhat more involved

This is much faster than before:

logplot

Theorem (Karatsuba ∼1960)

For n = 2k we have mult(poly) ∈ O(n1.59) (1.59 ≈ log(3))

My silly 5 minute Python code:

My silly 5 minute code is still much slower than SageMath’s:

Why is that? Well: (1) I am stupid ⇒ too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba’s algorithm build in

Actually in use today:

Toom–Cook algorithm ∼1963 with O(n1.46) (1.46 ≈ log(5/3))

Schönhage–Strassen algorithm ∼1971 with O(n log n log log n)

Toom–Cook generalizes Karatsuba; Schönhage–Strassen is based on FFT

Maybe in use soon (?):

Harvey–van der Hoeven algorithm ∼2019 with O(n log n)

Conjecture (Schönhage–Strassen ∼1971) O(n log n) is the best possible
So maybe that’s it!

This is fantastic for large numbers:

logplot

Do not try for small numbers due to overhead

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ∼200BCE, Mauchly ∼1946, many others as well) ∈ O(log n)

Euclidean algorithm (Euclid ∼300BCE) ∈ O
(
logmin(a, b)

)

Fast Fourier transform (Gauss ∼1805, Cooley–Tukey ∼1965) ∈ O(n log n)

Merge sort (von Neumann ∼1945) ∈ O(n log n)

For example, binary search does much better than linear search

A primer on computer algebra Or: Faster than expected April 2023 π / 5

Discrete and fast Fourier transform

Cyclic convolution of f = fn−1x
n−1 + ... and g = gn−1x

n−1 + ... is

h = f ∗n g =
∑

0≤l<nhlx
l , hl =

∑
j+k≡l mod nfjgk

We see in a second why this is cyclic

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

Discrete and fast Fourier transform

What is FFT in this context?

▶ Assume n = 2k and note that, using Euclid’s algorithm, writing

f = q0(x
n/2 − 1) + r0 = q1(x

n/2 + 1) + r1 gives

f (ωeven) = r0(ω
even) , f (ωodd) = r1(ω

odd)

▶ Writing r1()∗ = r1(ω) we can use divide-and-conquer since ω2 is a primitive
(n/2)th root of unity:

r0(ω
even) and r∗1 (ω

even) are DFTs of order n/2 ⇒make recursive call

Theorem (Fast Fourier transform (FFT) Cooley–Tukey ∼1965)

DFTω can computed in O(n log n)

Theorem (FFT and Vandermonde ∼1770?)

DFT−1
ω can computed in O(n log n)

The Vandermonde matrix, matrix of the multipoint evaluation map DFTω,

is easy to invert VωVω−1 = nId

Slogan Convolution = area obtained by sliding f through g

We have a cyclic version of this

In general, fg ≡ f ∗n g mod (xn − 1)
Thus, fg = f ∗n g if deg(fg) < n

Computation of fg is computation of f ∗n g

Theorem (Cooley–Tukey ∼1965)

Computing fg is in O(n log n) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n

Then fg = f ∗n g , so it remains to show that computing f ∗n g is in O(n log n)
But f ∗n g = DFT−1

ω

(
DFTω(f) ·pointwise DFTω(g)

)

DFTω(f) and DFTω(f)
−1 is in O(n log n)

This is much faster than before:

The overhead is however pretty large

Theorem (Cooley–Tukey ∼1965) FFT runs in O(n log n)

A primer on computer algebra Or: Faster than expected April 2023 4 / 5

There is still much to do...

Thanks for your attention!

A primer on computer algebra Or: Faster than expected April 2023 5 / 5

