Or: Faster than expected

AcceptChange what you cannot changeaccept

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE. SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

	HOW OFTEN YOU DO THE TASK						
	50/DAY	5/day	DAILY	WEEKLY	MONTHLY	YEARLY	
1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS	
5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS	
30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES	
HOW 1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES	
TIME 5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES	
OFF 30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS	
1 HOUR		10 Months	2 MONTHS	10 DAYS	2 DAYS	5 HOURS	
6 HOURS				2 MONTHS	2 WEEKS	1 DAY	
1 DAY					8 WEEKS	5 DAYS	

- Equations are everywhere : differential equations, linear or polynomial equations or inequalities, recurrences, equations in groups, algebras or categories, tensor equations etc.
- ► There are two ways of solving such equations: approximately or exactly
- Oversimplified, numerical analysis studies efficient ways to get approximate solutions; computer algebra wants exact solutions

- C_6H_{12} occurs in incongruent conformations: chair (one) and boats (many) mod mirrors
- ► Chair occurs far more frequently than the boats
- ► Chair is stiff while the boats can twist into one another

- \triangleright C₆H₁₂ occurs in incongruent conformations: chair (one) and boats (many) mod mirrors
- ► Chair occurs far more frequently than the boats
- ► Chair is stiff while the boats can twist into one another

- ▶ They then modeled the bods as vectors a_i and $a_i \star a_j$ =inner product
- Model $S_{ij} = a_i \star a_j$ as variables
- ► One gets polynomial variables subject to the relations above ⇒ get solution via Gröbner bases

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

▶ Now two more examples from representation theory that I recently learned

▶ Watch out for success and failure of experimenting with computer algebra

Or: Faster than expected

Now two more examples from representation theory that I recently learned
 Watch out for success and failure of experimenting with computer algebra
 A primer on computer algebra
 Or: Faster than expected
 April 2023 2 / 5

char table of S_7 :	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$P(\chi(g) = 0) = 28146/7$	75600 pprox 0.	372, $P(\chi(C) = 0) = 55/225 \approx 0.2$	24
 Now two more example Watch out for success 	es from rep	resentation theory that I recently learne	d

Or: Faster than expected

(x - 3)(4x - 5)		7	x^2	-4x	-2	
	x	-3	$2x^2$	$2x^4$	$-8x^{3}$	$-4x^2$
4x	$4x^{2}$	-12x		×3	$1 r^2$	2.
-5	-5x	15	-x	- 1	41	2X
$4x^2 - 12x - 5x + 15$		-1	$-x^2$	4x	2	
$4x^{2}$	- 17x + 15		2			

• Given two polynomials f and g of degree < n; we want fg

► Classical polynomial multiplication needs n^2 multiplications and $(n-1)^2$ additions; thus $mult(poly) \in O(n^2)$

It doesn't appear that we can do faster

► Karatsuba ~1960 It gets faster!

Reduce multiplication cost even when potentially increasing addition cost

ALGORITHM 8.1 Karatsuba's polynomial multiplication algorithm. Input: $f, g \in R[x]$ of degrees less than *n*, where *R* is a ring (commutative, with 1) and *n* a power of 2. Output: $fg \in R[x]$.

1. if n = 1 then return $f \cdot g \in R$

2. let $f = F_1 x^{n/2} + F_0$ and $g = G_1 x^{n/2} + G_0$, with $F_0, F_1, G_0, G_1 \in R[x]$ of degrees less than n/2

- 3. compute F_0G_0 , F_1G_1 , and $(F_0 + F_1)(G_0 + G_1)$ by a recursive call
- 4. return $F_1G_1x^n + ((F_0 + F_1)(G_0 + G_1) F_0G_0 F_1G_1)x^{n/2} + F_0G_0$

Example

$$\overline{f = g = x^3 + x^2 + x + 1}$$
 is equal to $F_1 + F_0 = (x + 1)x^2 + x + 1$
 $F_0^2 = F_1^2 = (x + 1)^2$ and $(2x + 2)(2x + 2)$ need 7 ops = 21 ops
To get *fg* we then need two more ops = 23 ops
Classical we need $4^2 + (4 - 1)^2 = 25$ ops

Or: Faster than expected

ALGORITHM 8.1 Karatsuba's polynomial multiplication algorithm. Input: $f, g \in R[x]$ of degrees less than *n*, where *R* is a ring (commutative, with 1) and *n* a power of 2. Output: $fg \in R[x]$.

1. if n = 1 then return $f \cdot g \in R$ Theorem (Karatsuba ~1960) For $n = 2^k$ we have $mult(poly) \in O(n^{1.59})$ (1.59 $\approx \log(3)$; always: $\log = \log_2$) There is also a version for general n but the analysis is somewhat more involved 3. compute F_0G_0 , F_1G_1 , and $(F_0 + F_1)(G_0 + G_1)$ by a recursive call

4. return $F_1G_1x^n + ((F_0 + F_1)(G_0 + G_1) - F_0G_0 - F_1G_1)x^{n/2} + F_0G_0$

Example

$$f = g = x^3 + x^2 + x + 1$$
 is equal to $F_1 + F_0 = (x + 1)x^2 + x + 1$
 $F_0^2 = F_1^2 = (x + 1)^2$ and $(2x + 2)(2x + 2)$ need 7 ops = 21 ops
To get *fg* we then need two more ops = 23 ops
Classical we need $4^2 + (4 - 1)^2 = 25$ ops

Or: Faster than expected

► Multiplication is everywhere so this is fabulous

```
My silly 5 minute Python code:
    from math import ceil, floor
    #math.ceil(x) Return the ceiling of x as a float, the smallest integer value greater than or equal to x.
    #math.floor(x) Return the floor of x as a float, the largest integer value less than or equal to x.
    def karatsuba(x.v):
        #base case
7 .
        if x < 10 and y < 10: # in other words, if x and y are single digits
            return x*y
9
        n = max(len(str(x)), len(str(y)))
        m = ceil(n/2)
                      #Cast n into a float because n might lie outside the representable range of integers.
        x H = floor(x / 10 * * m)
14
        x L = x \% (10^{**}m)
        v H = floor(y / 10**m)
        v L = v % (10 * * m)
        #recursive steps
        a = karatsuba(x H, y H)
        d = karatsuba(x L, y L)
        e = karatsuba(x H + x L, y H + y L) - a - d
24
        return int(a^{*}(10^{**}(m^{*}2)) + e^{*}(10^{**}m) + d)
26 v %time karatsuba(3141592653589793238462643383279502884197169399375105820974944592,
                    2718281828459045235360287471352662497757247093699959574966967627
        Theorem (Karatsuba \sim1900) For n = 2
                                                                          we nave
       Multiplication is everywhere so this is fabulous
```


Discrete and fast Fourier transform

▶ Assume that there is an operation DFT_{ω} such that:

$$\mathsf{fg} = \mathsf{DFT}_\omega^{-1}ig(\mathsf{DFT}_\omega(f)\mathsf{DFT}_\omega(g)ig)$$

with DFT_{ω} and DFT_{ω}^{-1} and $DFT_{\omega}(f)DFT_{\omega}(g)$ being cheap Then compute fg for polynomials f and g is "cheap"

Discrete and fast Fourier transform

In the following in need primitive roots of unity \$\omega\$ in some field \$R\$
 You can always assume \$R = \mathbb{C}\$ and \$\omega\$ = exp(2\pi k/n)\$
 A primer on computer algebra
 Or: Faster than expected

April 2023 4 / 5

The R-linear map

$$DFT_{\omega}(f) = (1, f(\omega), f(\omega^2), ..., f(\omega^{n-1}))$$

that evaluates a polynomial at ω^i is called the Discrete Fourier transform (DFT)

The R-linear map

$$DFT_{\omega}(f) = (1, f(\omega), f(\omega^2), ..., f(\omega^{n-1}))$$

that evaluates a polynomial at ω^i is called the Discrete Fourier transform (DFT)

A primer on computer algebra

Or: Faster than expected

Or: Faster than expected

Cyclic convolution of $f = f_{n-1}x^{n-1} + \dots$ and $g = g_{n-1}x^{n-1} + \dots$ is

$$h = f *_n g = \sum_{0 \le l < n} h_l x^l, \quad h_l = \sum_{j+k \equiv l \mod n} f_j g_k$$

We see in a second why this is cyclic

$$= (2x^{2} + 3x + 1)(x^{4} - 1) + 3x^{3} + 5x^{2} + 4x + 2 \equiv f *_{4} g \mod (x^{4} - 1)$$

Example Take $f = x^3 + 1$ and $g = 2x^3 + 3x^2 + x + 1$ $fg = 2x^6 + 3x^5 + x^4 + 3x^3 + 3x^2 + x + 1$ $= (2x^2 + 3x + 1)(x^4 - 1) + 3x^3 + 5x^2 + 4x + 2 \equiv f *_4 g \mod (x^4 - 1)$ A primer on computer algebra Or: Faster than expected April 2023

4 / 5

Final lemma we need

$$DFT_{\omega}(f *_n g) = DFT_{\omega}(f) \cdot_{\text{pointwise}} DFT_{\omega}(g)$$

Discrete and fast Fourier transform

Final lemma we need

$$DFT_{\omega}(f *_n g) = DFT_{\omega}(f) \cdot_{\text{pointwise}} DFT_{\omega}(g)$$

Discrete and fast Fourier transform

▶ Assume $n = 2^k$ and note that, using Euclid's algorithm, writing

$$f = q_0(x^{n/2} - 1) + r_0 = q_1(x^{n/2} + 1) + r_1 \text{ gives}$$
$$f(\omega^{\text{even}}) = r_0(\omega^{\text{even}}), \quad f(\omega^{\text{odd}}) = r_1(\omega^{\text{odd}})$$

Writing r₁(_)* = r₁(ω_) we can use divide-and-conquer since ω² is a primitive (n/2)th root of unity:

 $r_0(\omega^{ ext{even}})$ and $r_1^*(\omega^{ ext{even}})$ are DFTs of order $n/2 \Rightarrow$ make recursive call

Or: Faster than expected

April 2023 4 / 5

There is still much to do...

Apr 2011 2 / 5

4x

4x2

- Y

-x*

Thanks for your attention!

 $4x^4$

4x2

- Y

-x*