A primer on computer algebra

Or: Faster than expected

AcceptChange what you cannot ehangeaccept

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFIIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SANE? (ACROSS FNE YERRS)

$\left[\begin{array}{c} 1 \text { seconl } \\ 5 \text { sEconds } \\ 30 \text { SECONDS } \end{array}\right.$	-HOW OFTEN YOU DO THE TASK					
	1 Dar	2 Hours	$\begin{gathered} 30 \\ \text { MINUTES } \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \text { MINTES } \\ \hline \end{array}$	MINUTE	$5_{\text {SECONDS }}$
	5 DAMS	12 Hours	2 Hours	$\begin{gathered} 21 \\ \text { MINUTES } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { MINUTES } \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \text { Secowos } \end{gathered}$
	$4 \text { WEERS }$	3 DATS	12 Hours	2 hours	$\begin{array}{c\|} 30 \\ \text { MINUTES } \\ \hline \end{array}$	$\begin{gathered} 2 \\ \text { MINUTES } \\ \hline \end{gathered}$
$\begin{aligned} & \text { HOW } 1 \text { MINUTE } \\ & \text { MUCH } \end{aligned}$	$8 \text { WEERS }$	6 DAMS	1 DAY	4 Hours	1 HovR	$\begin{gathered} 5 \\ \text { MINUTES } \\ \hline \end{gathered}$
TIME 5 MINUTES	9 MONTH	$4 \text { WEERS }$	6 Dars	21 hours	5 Hours	$\begin{gathered} 25 \\ \text { MINUTES } \\ \hline \end{gathered}$
SHAVE 30 MINUTES		6 MONTIS	$5 \text { WEERS }$	5 DAMS	1 DAY	2 Hours
1 Hour		10 MONTHS	2 MONTHS	10 DATS	2 DAYS	5 Hours
6 HOURS				2 MONTHS	$\begin{array}{\|l\|l\|} \hline 1 \mathrm{~mm} \\ \hline \text { WEESS } \\ \hline \end{array}$	1 DAY
1 Day					$8 \text { WEEKS }$	5 DAMS

Computer algebra

- Equations are everywhere : differential equations, linear or polynomial equations or inequalities, recurrences, equations in groups, algebras or categories, tensor equations etc.
- There are two ways of solving such equations: approximately or exactly
- Oversimplified, numerical analysis studies efficient ways to get approximate solutions; computer algebra wants exact solutions

Computer algebra

- $\mathrm{C}_{6} \mathrm{H}_{12}$ occurs in incongruent conformations: chair (one) and boats (many) mod mirrors
- Chair occurs far more frequently than the boats
- Chair is stiff while the boats can twist into one another

Computer algebra

- $\mathrm{C}_{6} \mathrm{H}_{12}$ occurs in incongruent conformations: chair (one) and boats (many) mod mirrors
- Chair occurs far more frequently than the boats
- Chair is stiff while the boats can twist into one another

Computer algebra

$$
\begin{aligned}
& a_{1} \star a_{1}=a_{2} \star a_{2}=\cdots=a_{6} \star a_{6}=1, \quad \text {, ength between } \quad \text { bonds } \\
& a_{1} \star a_{2}=a_{2} \star a_{3}=\cdots=a_{6} \star a_{1}=\frac{1}{3} \text {, Angle } \approx \\
& a_{1}+a_{2}+\cdots+a_{6}=0 \text {. Cyclic }
\end{aligned}
$$

- They then modeled the bods as vectors a_{i} and $a_{i} \star a_{j}=$ inner product
- Model $S_{i j}=a_{i} \star a_{j}$ as variables
- One gets polynomial variables subject to the relations above \Rightarrow get solution via Gröbner bases

Computer algebra

What we are using throughout is worst-case-analysis using:

Careful This is different from:

- Th
- Average-case-analysis
$-\mathrm{Mo}$
- On Computational implications due to overhead (\approx the part before n_{0}) plution via Grobner bases

Comput A Gröbner basis of an ideal $I \subset R\left[X_{1}, \ldots, X_{n}\right]$ and a monomial order is a set $G \subset I$ such that $\langle\mid t(G)\rangle=\langle\mid t(I)\rangle$; $\mathrm{l}=$ leading term

Theorem (Buchberger ~1965) Gröbner bases exist can be computed algorithmically and can be used to solve:

- ideal membership
- ideal containment
- properties of $V(I)$, e.g. $V(I)=\emptyset \Leftrightarrow G=\{1\}$

Problem Gröbner $\in O$ (poly in $\left.d^{2^{n}}\right)$ for $d=$ largest degree

Computer algebra

- Now two more examples from representation theory that I recently learned
- Watch out for success and failure of experimenting with computer algebra

Computer algebra

- Now two more examples from representation theory that I recently learned
- Watch out for success and failure of experimenting with computer algebra

Compute Success A computer can check that for you (Craven ~2015)

V any simple of $G=\mathrm{SL}_{2}\left(\mathbb{F}_{p^{k}}\right)$ over characteristic p is algebraic e.g. $p=5, \mathbb{K}=\mathbb{F}_{5}, k=2, V=\left(\mathbb{F}_{25}\right)^{2}$:

GModule of dimension 1 over GF(5), GModule of dimension 4 over GF(5), GModule of dimension 4 over GF(5), GModule of dimension 6 over GF(5), GModule of dimension 8 over GF(5), GModule of dimension 9 over GF(5), simples in $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$: GModule of dimension 10 over GF(5), GModule of dimension 12 over GF(5), GModule of dimension 16 over GF(5), GModule of dimension 16 over GF(5), GModule of dimension 20 over GF(5), GModule of dimension 24 over GF(5), GModule of dimension 25 over GF(5), GModule of dimension 30 over GF(5), GModule of dimension 40 over GF(5) 1 G:=SpecialLinearGroup $\left(2,5^{\wedge} 2\right)$; indecomposables in $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$: IsCyclic(SylowSubgroup(G,5)); false

GModute of dimension 1 over GF(5), GModule M of dimension 4 over GF(5), GModule of dimension 4 over GF(5), GModule of dimension 6 over GF(5), GModule of dimension 12 over GF(5), GModule of dimension 8 over GF(5), GModule of dimension 9 over GF(5), GModule of dimension 16 over $\mathrm{GF}(5)$, GModule of dimension 18 over $\mathrm{GF}(5)$, GModute of dimension 24 over GF(5), GModule of dimension 2θ over $G F(5)$, GModule of dimension 2θ over GF(5), GModule of dimension 16 over GF(5), GModule of dimension 30 over $\mathrm{GF}(5)$, GModule of dimension 40 over GF(5), GModule of dimension 20 over $\mathrm{GF}(5)$, GModute of dimension 4θ over GF(5), GModule of dimension 60 over $\mathrm{GF}(5)$, +a few more (45 in total)

Computer algebra

- Now two more examples from representation theory that I recently learned
- Watch out for success and failure of experimenting with computer algebra

Computor alorohra

char table of M_{11} :

$$
\begin{array}{l|rrrrrrrrrrr}
\text { Class } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { Size } & 1 & 165 & 440 & 990 & 1584 & 1320 & 990 & 990 & 720 & 720 \\
\text { Order } & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 8 & 11 & 11 \\
\hdashline- & & & & & & & & & & & \\
p= & 1 & 1 & 3 & 2 & 5 & 3 & 4 & 4 & 10 & 9 \\
p= & 3 & 1 & 2 & 1 & 4 & 5 & 2 & 7 & 8 & 9 & 10 \\
p= & 5 & 1 & 2 & 3 & 4 & 1 & 6 & 8 & 7 & 9 & 10 \\
p= & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 1
\end{array}
$$

- We now discuss finite groups G with fd reps over \mathbb{C}
- Burnside ~1911 Every >1d simple character has zeros

Question Determine where the zeros are

- Watch out for success and failure of experimenting with computer algebra

Computer algebra

$$
\begin{aligned}
& \begin{array}{l|lllll}
& \\
\text { Class } & 1 & 2 & 3 & 4 & 5 \\
\text { Size } & 1 & 3 & \frac{6}{2} & \frac{8}{3} & \frac{6}{4} \\
\text { Order } & 1 & 2 & 2 & 3 & 4
\end{array} \\
& \mathrm{p}=2 \quad 1 \quad 1 \quad 1 \quad 4 \quad 2
\end{aligned}
$$

$$
P(\chi(g)=0)=24 / 120 \approx 0.194, \quad P(\chi(C)=0)=4 / 25=0.16
$$

- Problem Determine for which $g \in G$ we have $\chi(g)=0$ Too hard!
- Better(?) problem $P(\chi(g)=0)$ or $P(\chi(C)=0)$ (probability) for randomly chosen $g \in G$ or conjugacy class C
\checkmark Vvatch out for success and fallure of experimenting with computer algebra

Computer algebra

- Now two more examples from representation theory that I recently learned
- Watch out for success and failure of experimenting with computer algebra

Here is $P(\chi(g)=0)$:
Computer algebra

My silly 10 -min-code only made it to S_{17}, pathetic, sorry for that!
Alexander Miller computed these up to S_{38}

- Now
- Wat Anyway, we can guess from here for $P(\chi(g)=0)$ but the data is not good enough for $P(\chi(C)=0)$

Fast multiplication

$(x-3)(4 x-5)$			$\begin{array}{r} 2 x^{2} \\ -x \end{array}$	x^{2}	$-4 x$	-2
	X	-3		$2 x^{4}$	$-8 x^{3}$	$-4 x^{2}$
4x	$4 x^{2}$	$-12 x$		$-x^{3}$	$4 x^{2}$	$2 x$
-5	$-5 x$	15				
$\begin{aligned} & 4 x^{2}-12 x-5 x+15 \\ & 4 x^{2}-17 x+15 \end{aligned}$			-1	$-x^{2}$	$4 x$	2

- Given two polynomials f and g of degree $<n$; we want $f g$
- Classical polynomial multiplication needs n^{2} multiplications and $(n-1)^{2}$ additions; thus mult $($ poly $) \in O\left(n^{2}\right)$
- It doesn't appear that we can do faster

Fast multiplication

- Karatsuba ~1960 It gets faster!
- Reduce multiplication cost even when potentially increasing addition cost
- Second, apply divide-and-conquer

Fast multiplication

We compute $a c, b d, u=(a+b)(c+d), v=a c+b d, u-v$ with 3 multiplications and 4 additions $=7$ operations
The total has increased, but a recursive application will drastically reduce the overall cost Upshot We only have 3 multiplications not 4

- Reduce multiplication cost even when potentially increasing addition cost
- Second, apply divide-and-conquer

Fast multiplication

- ALGORITHM 8.1 Karatsuba's polynomial multiplication algorithm.

Input: $f, g \in R[x]$ of degrees less than n, where R is a ring (commutative, with 1) and n a power of 2 .
Output: $f g \in R[x]$.

1. if $n=1$ then return $f \cdot g \in R$
2. let $f=F_{1} x^{n / 2}+F_{0}$ and $g=G_{1} x^{n / 2}+G_{0}$, with $F_{0}, F_{1}, G_{0}, G_{1} \in R[x]$ of degrees less than $n / 2$
3. compute $F_{0} G_{0}, F_{1} G_{1}$, and $\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$ by a recursive call
4. return $F_{1} G_{1} x^{n}+\left(\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-F_{0} G_{0}-F_{1} G_{1}\right) x^{n / 2}+F_{0} G_{0}$

Example

$f=g=x^{3}+x^{2}+x+1$ is equal to $F_{1}+F_{0}=(x+1) x^{2}+x+1$
$F_{0}^{2}=F_{1}^{2}=(x+1)^{2}$ and $(2 x+2)(2 x+2)$ need $7 \mathrm{ops}=21$ ops
To get $f g$ we then need two more ops $=23$ ops
Classical we need $4^{2}+(4-1)^{2}=25$ ops

Fast multiplicat
This applies recursively, so we actually save a lot:

classical

2 iterations

4 iterations

1 iteration

3 iterations

5 iterations

Fast multiplication

- ALGORITHM 8.1 Karatsuba's polynomial multiplication algorithm. Input: $f, g \in R[x]$ of degrees less than n, where R is a ring (commutative, with 1) and n a power of 2 .
Output: $f g \in R[x]$.

1. if $n=1$ then return $f \cdot g \in R$

Theorem (Karatsuba ~1960)

For $n=2^{k}$ we have mult $($ poly $) \in O\left(n^{1.59}\right) \quad\left(1.59 \approx \log (3)\right.$; always: $\left.\log =\log _{2}\right)$
There is also a version for general n but the analysis is somewhat more involved
3. compute $F_{0} G_{0}, F_{1} G_{1}$, and $\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$ by a recursive call
4. return $F_{1} G_{1} x^{n}+\left(\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-F_{0} G_{0}-F_{1} G_{1}\right) x^{n / 2}+F_{0} G_{0}$

Example

$f=g=x^{3}+x^{2}+x+1$ is equal to $F_{1}+F_{0}=(x+1) x^{2}+x+1$ $F_{0}^{2}=F_{1}^{2}=(x+1)^{2}$ and $(2 x+2)(2 x+2)$ need $7 \mathrm{ops}=21$ ops
To get $f g$ we then need two more ops $=23$ ops
Classical we need $4^{2}+(4-1)^{2}=25$ ops

Fast multiplication

Binary system

$$
k=2:
$$

Replace x^{k} by e.g. 2^{k} and do the same as before

- Karatsuba ~1960 Using k-adic expansion, this works for numbers as well
- Theorem (Karatsuba $\sim \mathbf{1 9 6 0}$) For $n=2^{k}\left(n=\#\right.$ digits) we have mult $\in O\left(n^{1.59}\right)$
- Multiplication is everywhere so this is fabulous

Fast multiplication

My silly 5 minute Python code:

```
from math import ceil, floor
#math.ceil(x) Return the ceiling of x as a float, the smallest integer value greater than or equal to x
#math.floor(x) Return the floor of x as a float, the largest integer value less than or equal to x.
def karatsuba(x,y):
    #base case
    if x < 10 and y < 10: # in other words, if x and y are single digits
            return x*y
        n = max(len(str(x)), len(str(y)))
        m}=\operatorname{ceil(n/2) #Cast n into a float because n might lie outside the representable range of integers.
        x_H = floor(x / 10**m)
        x_L = x % (10**m)
        y_H = floor(y / 10**m)
        y_L = y % (10**m)
        #recursive steps
        a = karatsuba(x_H,y_H)
        d = karatsuba(x_L,y_L)
        e = karatsuba(x_H + x_L, y_H + y_L) - a - d
        return int(a*(10**(m*2)) + e*(10**m) + d)
%time karatsuba(3141592653589793238462643383279502884197169399375105820974944592,
    |2718281828459045235360287471352662497757247093699959574966967627)
```


- Multiplication is everywhere so this is fabulous

My silly 5 minute code is still much slower than SageMath's:

Type some Sage code below and press Evaluate.

```
    \(y_{-} \mathrm{L}=\mathrm{y} \%\left(10^{* *} \mathrm{~m}\right)\)
    \#recursive steps
    \(a=\) karatsuba (x_H,y_H)
    \(d=\) karatsuba (x_L, y_L)
    \(e=\) karatsuba \(\left(x_{-}^{-} H+x_{-} L, y_{-} H+y_{-} L\right)-a-d\)
    return int(a*(10**(m*2)) + \(\left.\mathrm{e}^{*}\left(10^{* *} \mathrm{~m}\right)+\mathrm{d}\right)\)
    stime karatsuba( 3141592653589793238462643383279502884197169399375105820974944592,2718281828459045235360287471352662497757247093699959574966967627 )
```


Evaluate

```
CPU times: user 10.3 ms, sys: 412 \mus, total: 10.7 ms
```

Wall time: $10.8 \mathrm{~ms} \longleftarrow$
8539734222673566957498846900491595793628487889746454950813687461572372213054499114931277629325900131223124341791952806582723184

Type some Sage code below and press Evaluate.
1 stime $3141592653589793238462643383279502884197169399375105820974944592 * 2718281828459045235360287471352662497757247093699959574966967627$

Evaluate

```
CPU times: user 55 \mus, sys: 22 \mus, total: 77 \mus
```

Wall time: $82.5 \mu \mathrm{~s}$

8539734222673567065463550869546574495034888535765114961879601127067743044893204848617875072216249073013374895871952806582723184

Why is that? Well: (1) I am stupid \Rightarrow too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba's algorithm build in

Fast multiplication

Actually in use today:
Toom-Cook algorithm ~ 1963 with $O\left(n^{1.46}\right)(1.46 \approx \log (5 / 3))$
Schönhage-Strassen algorithm ~ 1971 with $O(n \log n \log \log n)$
Toom-Cook generalizes Karatsuba; Schönhage-Strassen is based on FFT
Maybe in use soon (?):
Harvey-van der Hoeven algorithm ~ 2019 with $O(n \log n)$
Annals of Mathematics 193 (2021), 563-617
https://doi.org/10.4007/annals.2021.193.2.4

Integer multiplication in time $O(n \log n)$

By David Harvey and Joris van der Hoeven
Conjecture (Schönhage-Strassen $\sim 1971) O(n \log n)$ is the best possible So maybe that's it!

- Multiplication is everywhere so this is fabulous

- Multiplication is everywhere so this is fabulous

Fast multiplication

- Multiplication is everywhere so this is fabulous

Fast multiplication

- Multiplication is everywhere so this is fabulous

Discrete and fast Fourier transform

- Assume that there is an operation $D F T_{\omega}$ such that:

$$
f g=D F T_{\omega}^{-1}\left(D F T_{\omega}(f) D F T_{\omega}(g)\right)
$$

with $D F T_{\omega}$ and $D F T_{\omega}^{-1}$ and $D F T_{\omega}(f) D F T_{\omega}(g)$ being cheap

- Then compute $f g$ for polynomials f and g is "cheap"

Discrete and fast Fourier transform

- In the following in need primitive roots of unity ω in some field R
- You can always assume $R=\mathbb{C}$ and $\omega=\exp (2 \pi k / n)$

Discrete and fast Fourier transform

The R-linear map

$$
D F T_{\omega}(f)=\left(1, f(\omega), f\left(\omega^{2}\right), \ldots, f\left(\omega^{n-1}\right)\right)
$$

that evaluates a polynomial at ω^{i} is called the Discrete Fourier transform (DFT)

Discrete and fast Fourior transform

Theorem (Fast Fourier transform (FFT) Cooley-Tukey ~1965)

$$
D F T_{\omega} \text { can computed in } O(n \log n)
$$

Theorem (FFT and Vandermonde ~1770?)

The R-linear map

$$
D F T_{\omega}(f)=\left(1, f(\omega), f\left(\omega^{2}\right), \ldots, f\left(\omega^{n-1}\right)\right)
$$

that evaluates a polynomial at ω^{i} is called the Discrete Fourier transform (DFT)

Discrete and fast Fourior transform

Theorem (Fast Fourier transform (FFT) Cooley-Tukey ~1965)

$$
D F T_{\omega} \text { can computed in } O(n \log n)
$$

Theorem (FFT and Vandermonde ~1770?)

$$
D F T_{\omega}^{-1} \text { can computed in } O(n \log n)
$$

The Vandermonde matrix, matrix of the multipoint evaluation map $D F T_{\omega}$,

$$
V_{\omega}=\operatorname{VDM}\left(1, \omega, \ldots, \omega^{n-1}\right)=\left(\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

is easy to invert $V_{\omega} V_{\omega^{-1}}=n / d$
$V_{i}=\operatorname{VDM}(1, i,-1,-i)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right) V_{i}^{-1}=\frac{1}{4}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$

Discrete and fast Fourier transform

Cyclic convolution of $f=f_{n-1} x^{n-1}+\ldots$ and $g=g_{n-1} x^{n-1}+\ldots$ is

$$
h=f *_{n} g=\sum_{0 \leq I<n} h_{l} x^{\prime}, \quad h_{l}=\sum_{j+k \equiv I \bmod n} f_{j} g_{k}
$$

We see in a second why this is cyclic

Discrete and fast Fourier transform

Example Take $f=x^{3}+1$ and $g=2 x^{3}+3 x^{2}+x+1$

$$
\begin{gathered}
f g=2 x^{6}+3 x^{5}+x^{4}+3 x^{3}+3 x^{2}+x+1 \\
=\left(2 x^{2}+3 x+1\right)\left(x^{4}-1\right)+3 x^{3}+5 x^{2}+4 x+2 \equiv f *_{4} g \bmod \left(x^{4}-1\right)
\end{gathered}
$$

Discrete and fast Fourier transform

Example Take $f=x^{3}+1$ and $g=2 x^{3}+3 x^{2}+x+1$

$$
\begin{gathered}
f g=2 x^{6}+3 x^{5}+x^{4}+3 x^{3}+3 x^{2}+x+1 \\
=\left(2 x^{2}+3 x+1\right)\left(x^{4}-1\right)+3 x^{3}+5 x^{2}+4 x+2 \equiv f *_{4} g \bmod \left(x^{4}-1\right)
\end{gathered}
$$

Discrete and fast Fourier transform

Final lemma we need

$$
D F T_{\omega}\left(f *_{n} g\right)=D F T_{\omega}(f) \cdot \text { pointwise } D F T_{\omega}(g)
$$

Discrete and fast Fourier transform

Theorem (Cooley-Tukey ~1965)
Computing $f g$ is in $O(n \log n)$ for $\operatorname{deg}(f g)>n$
"Proof"
Take n so that $\operatorname{deg}(f g)>n$
Then $f g=f *_{n} g$, so it remains to show that computing $f *_{n} g$ is in $O(n \log n)$

$$
\text { But } f *_{n} g=D F T_{\omega}^{-1}\left(D F T_{\omega}(f) \cdot \text { pointwise } D F T_{\omega}(g)\right)
$$ $D F T_{\omega}(f)$ and $D F T_{\omega}(f)^{-1}$ is in $O(n \log n)$

Final lemma we need

$$
D F T_{\omega}\left(f *_{n} g\right)=D F T_{\omega}(f) \cdot \text { pointwise } D F T_{\omega}(g)
$$

Discrete and fast Fourier transform

What is FFT in this context?

- Assume $n=2^{k}$ and note that, using Euclid's algorithm, writing

$$
\begin{gathered}
f=q_{0}\left(x^{n / 2}-1\right)+r_{0}=q_{1}\left(x^{n / 2}+1\right)+r_{1} \text { gives } \\
f\left(\omega^{\text {even }}\right)=r_{0}\left(\omega^{\text {even }}\right), \quad f\left(\omega^{\text {odd }}\right)=r_{1}\left(\omega^{\text {odd }}\right)
\end{gathered}
$$

- Writing $\left.r_{1}()^{*}\right)^{*}=r_{1}\left(\omega_{-}\right)$we can use divide-and-conquer since ω^{2} is a primitive $(n / 2)$ th root of unity:

$$
r_{0}\left(\omega^{\text {even }}\right) \text { and } r_{1}^{*}\left(\omega^{\text {even }}\right) \text { are DFTs of order } n / 2 \Rightarrow \text { make recursive call }
$$

- Equations are everywhere: differential equations. linear or polynomial equations or inequalices, recurrences, equations in groups, ilgetras or categories, tenser cquations etca
- There are two ways of solving such equations: approximataly or exactly
- Oversimplified, numerical analysisis studies efficient ways to get appracimate solutions; computer algetran wants exact solutions

- Multiplication s everywher 50 this 5 n noulour

- $\mathrm{C}_{2} \mathrm{H}_{13}$ ocecon in intorgrient corformationa ctair (onee) and bouss (manty) mod mirimen
- Chuir occurs far more frequently than the boasts
- Chisir s mifif while the bats can wist into one znother

Fast multeplication

(x-3)(4x-5]			$2 x^{2}$	x^{2}	$-4 x$	-2
	x	-3		$2 x^{4}$	$-8 x^{3}$	$-4 x^{2}$
4 x	$4 x^{2}$	-12x		$-x^{3}$	$4 x^{2}$	$2 x$
-5	-5x	15	-			
$4 x^{2}-12 x-5 x+15$$4 x^{2}-17 x+15$			-1	$-x^{2}$	$4 x$	2

- Given two polynomids of and g of degree < n w we want ff
- Classical pobmomial multipicication needs n^{2} multiplications and $(n-1)^{2}$ additions; thus mult $(p a y) \in O\left(n^{2}\right)$
- It doesn't appear that we can do faster

Evample

There is still much to do..

- Equations are everywhere: differential equations. linear or polynomial equations or inequalices, recurrences, equations in groups, ilgetras or categories, tenser cquations etca
- There are two ways of solving such equations: approximataly or exactly
- Oversimplified, numeical analysiz studies efficient ways to get appracimate solutions; computer algetran wants exact solutions

- Multiplication k everywhere so this is fobulowis

- Chuir occurs far more frequently than the boasts
- Chair is stiff while the boats can twist into one another

Fast multeplication

(x-3)(4x-5]			$2 x^{2}$	x^{2}	$-4 x$	-2
	x	-3		$2 x^{4}$	$-8 x^{3}$	$-4 x^{2}$
4 x	$4 x^{2}$	-12x		$-x^{3}$	$4 x^{2}$	$2 x$
-5	-5x	15	-			
$4 x^{2}-12 x-5 x+15$$4 x^{2}-17 x+15$			-1	$-x^{2}$	$4 x$	2

- Given two polynomids of and g of degree < n w we want ff
- Classical pobmomial multipicication needs n^{2} multiplications and $(n-1)^{2}$ additions; thus mult $(p a y) \in O\left(n^{2}\right)$
- It doesn't appear that we can do faster

Thanks for your attention!

