


Matrix problems

▶ Dichotomy = division into two especially mutually exclusive or contradictory groups

▶ Slogan Dichotomy is everywhere

▶ Today My favorite linear algebra example of dichotomy

Before that:

My favorite example of a dichotomy

(not related to linear algebra)

Example (of 1)

Theorem (folklore ≪1950) Almost all graphs are connected

Ratio connected/all:

10000 random graphs on 100 vertices:

Example (of 0)

Theorem (folklore ≪1950) Almost no graph is planar

Ratio planar/all:

10000 random graphs on 100 vertices:

There are many more statements of that form

But now: Linear algebra
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▶ Metatheorem (0-1 theorem; folklore ≪1950) Almost all properties of
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Matrix problems

▶ Task Classify vector spaces up to isomorphism

▶ Solution Theorem (folklore ≪1900) The dimension determines the vector space

▶ Thus, vector spaces are classified by one discrete parameter

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Matrix problems

Jordan normal form (JNF):
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Matrix problems

∼ ⇔ same linear auto. mod base change

≈ ⇔ same linear map mod base change

▶ Matrices A = (A1, ...,Am) and B = (B1, ...,Bm) are simultaneously equivalent if:

(A ≈ B) ⇔ (∃P,Q : ∀i : Ai = Q−1BiP with P,Q invertible )
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Matrix problems

▶ Theorem (folklore ≪1900) Two matrices are equivalent if and only if they
have the same nameless/Smith normal form as above
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Matrix problems

▶ For m = 2 one has Kronecker’s normal form (KNF) Kronecker ∼1890

▶ The KNF is similar to the JNF, but with four different blocks

▶ For m = 2 the classification is thus given by finitely many discrete

parameters = sizes, types of blocks; and ≤ one continuous parameter = eigenvalue

So that this does not get completely bonkers:
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Matrix problems

▶ Whenever there is a nice solution, then this was done quite a while ago ≪1900

▶ Next A different approach to these problems ∼1950
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Quivers and matrices

m = 1: 1 2

m = 2: 1 2

m = 3: 1 2

▶ The problem of simultaneous equivalence can be associated to a quiver

▶ Quiver = (finite) directed graph “It contains arrows”

▶ One then can formally prove that m = 3 is “impossible”

I have not forgotten similarity
We get there soon

Why are these called representations?

Because every quiver Q has an associated algebra, P
the path algebra,

such that QRep ∼= PRep

Examples

But we do not need to know that

The classification in this case is not as nice
I comment on that later
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▶ A representation of a quiver (“a matrix problem for a quiver”) is:

(i) A choice of a vector space for each vertex
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Quivers and matrices

A matrix problem associated to a connected quiver Q without oriented cycles is...

(1) ...finite if and only if Q is of ADE type

(2) ...infinite tame if and only if Q is of affine ADE type

(3) ...wild otherwise

▶ Finite = classification is given by finitely many discrete parameters; infinite
tame = finitely many discrete and one continuous parameter; wild = forget it

▶ Q = the quiver; Q = the underlying graph

Q Q

I have not forgotten similarity
We get there soon

Why are these called representations?

Because every quiver Q has an associated algebra, P
the path algebra,

such that QRep ∼= PRep

Examples

But we do not need to know that

The classification in this case is not as nice
I comment on that later
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Quivers and matrices

▶ ADE graphs and friends appear everywhere

▶ Left The ADE types; Right The affine ADE types
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Quivers and matrices
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Quiver representations

vector spaces : 1

Jordan: 1

rank: 1 2

Kronecker : 1 2

▶ A representation of the vector space quiver is a choice of a vector space

▶ A representation of the Jordan quiver is a choice of a vector space and a

linear map

▶ A representation of the rank quiver is a choice of two vector spaces and a

linear map between them

▶ A representation of the Kronecker quiver is a choice of two vector spaces and

two linear maps between them

Goal

Design representations and equivalence of these representations such that

the indecomposables mod iso correspond to the Jordan-type blocksPicture stolen from Geordie Williamson

Simple = no substructure, indecomposable = M ∼= X ⊕ Y implies X ∼= 0 or Y ∼= 0
These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
e.g. 100, 010, 001, 110, 011 and 111

Dlab–Ringel ∼1973 found a generalization to all finite Dynkin types

Heng ∼2023 found a generalization to all finite Coxeter types

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver↭
Class 1 Cn ⇒ Cn+1 with (idn, 0) and Ln

Class 2 Cn+1 ⇒ Cn with (idn, 0)
T and LT

n

Class 3 Cn ⇒ Cn with idn and Jn(λ)

To be more precise:
one still needs to work to get the actual

classification; the theorems only

give an overall parametrization scheme

We get:

3 subspace problem Discrete

4 subspace problem One parameter

5 subspace problem Wild (for now: wild=¬tame)
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Quiver representations

▶ A morphism of quiver representations is a collection of linear maps satisfying

the expected commuting diagram

▶ Equivalence is then defined with respect to isomorphism
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Quiver representations

▶ Lemma/Fact Quiver representations form a Krull–Schmidt abelian category
so the usual Yoga works

▶ Goal Classify simple and/or indecomposable representations
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Quiver representations

▶ Theorem (Donovan–Freislich, Nazarova ∼1973) A (usual adjectives)
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Quiver representations

vector spaces : 1

Jordan: 1

rank: 1 2

Kronecker : 1 2

▶ ADE Theorem ⇒ the vector space quiver has inde. given by C
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Quiver representations

3 subspaces :
0

1

2

3

4 subspaces : 0

12

34

5 subspaces : 0

1

2

3

4

5

▶ Subspace problem Classify V1, ...,Vm ⊂ V0 up to

(V1, ...,Vm) ≡ (W1, ...,Wm) if ∃ iso. f : V0 → V0 with f (Vi ) = Wi

▶ Above m = 3, 4, 5 as quiver problems
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Quiver representations

Problem Classification Quiver

Vector space Discrete 1
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2

3
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5 subspace Wild 0
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4

5
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Dichotomy (or trichotomy, depending on who you ask)

▶ Q has wild representation type if, for each fdim algebra A, there exists an

exact functor I : ARep → QRep preserving inde. Similar to NP complete

▶ Classifying inde. Q-reps for wild Q implies that we can do the same for any

finite dimensional algebra

Tame ↭ at most one-parameter families of inde.

Wild ↭ at least as complicated as any other quiver

We will use the same notions for finite dimensional algebras

Example (Higman ∼1953)
K[G ] (G a finite group and K = K of char p, p|#G) is finite

⇔
the p-Sylow subgroups of G are cyclic

Example (Bondarenko–Drozd ∼1977)
K[G ] (G a finite group and K = K of char p, p|#G) is infinite tame

⇔
p = 2 and the 2-Sylow subgroups of G are dihedral, semidihedral or generalized quaternion

Essentially nothing is tame
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The symmetric group Sn = Aut({1, ..., n}) is finite/C

Example (Putcha ∼1997)

The transformation monoid Tn = End({1, ..., n}) is wild/C unless n ≤ 4

The infinite setting gets much more difficult (and that is why its skipped)

Example

1 is tame and TAME

Example (Ringel ∼1979)

1 2 is tame but WILD

Capital spelling = same as before but including ∞-dim. reps

Classifying inde. of the Jordan quiver
is the same as classifying them for C[X ]

and C[X ] is a PID so M ∼= (free)i ⊕ (fdim)j

bilinear: , trilinear:

Theorem (Horn–Sergeichuk ∼2006, but parts are much older)
Classification of bilinear forms ⇔ classification of matrix congruence A = PTBP

with normal form pieces given by Jn(0) and

The trilinear analog is beyond hopeless
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Dichotomy (or trichotomy, depending on who you ask)

▶ As above, this is not the end of the line

▶ Theorem (Belitskii–Sergeichuk ∼2007) Classifying trilinear forms contains
the problem of classifying inde. of any finite dimensional algebra, but not vice
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Wild ↭ at least as complicated as any other quiver
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Matrix problems

▶ Task Classify vector spaces up to isomorphism

▶ Solution Theorem (folklore ≪1900) The dimension determines the vector space

▶ Thus, vector spaces are classified by one discrete parameter

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Matrix problems

Jordan normal form (JNF):
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Matrix problems

▶ Theorem (folklore ≪1900) Two matrices are equivalent if and only if they
have the same nameless/Smith normal form as above

▶ Thus, equivalence for m = 1 is classified by:

one discrete parameter = the rank

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps
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Matrix problems

▶ For m = 2 one has Kronecker’s normal form (KNF) Kronecker ∼1890

▶ The KNF is similar to the JNF, but with four different blocks

▶ For m = 2 the classification is thus given by finitely many discrete

parameters = sizes, types of blocks; and ≤ one continuous parameter = eigenvalue

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter
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The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B
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Matrix problems

▶ Equivalence has a nice solution for m = 1 and is doable for m = 2

▶ For m = 3 this is extremely difficult

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Quiver representations

▶ Theorem (Yoshii ∼1956, Gabriel ∼ 1972) A connected quiver Q without

oriented cycles has finitely many indecomposables if and only if Q is of ADE type

▶ In this case # indecomposables = # positive roots Discrete parameters!

Goal

Design representations and equivalence of these representations such that

the indecomposables mod iso correspond to the Jordan-type blocksPicture stolen from Geordie Williamson

Simple = no substructure, indecomposable = M ∼= X ⊕ Y implies X ∼= 0 or Y ∼= 0
These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
e.g. 100, 010, 001, 110, 011 and 111

Dlab–Ringel ∼1973 found a generalization to all finite Dynkin types

Heng ∼2023 found a generalization to all finite Coxeter types

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver↭
Class 1 Cn ⇒ Cn+1 with (idn, 0) and Ln

Class 2 Cn+1 ⇒ Cn with (idn, 0)
T and LT

n

Class 3 Cn ⇒ Cn with idn and Jn(λ)

To be more precise:
one still needs to work to get the actual

classification; the theorems only

give an overall parametrization scheme

We get:

3 subspace problem Discrete

4 subspace problem One parameter

5 subspace problem Wild (for now: wild=¬tame)
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Quiver representations

▶ Theorem (Donovan–Freislich, Nazarova ∼1973) A (usual adjectives)

quiver Q has tame rep type if and only if Q is of finite or affine ADE type

▶ Tame = indecomposables can form countably many one-parameter families;
infinite tame = tame but not finite
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Quiver representations

Problem Classification Quiver

Vector space Discrete 1

Equivalence One parameter 1

Double equivalence Wild 1

Similarity Discrete 1 2

Double similarity One parameter 1 2

Triple similarity Wild 1 2

3 subspace Discrete
0

1

2

3

4 subspace One parameter 0

12

34

5 subspace Wild 0

1

2

3

4

5

▶ Mind the gap!

Goal
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These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
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Dichotomy (or trichotomy, depending on who you ask)

▶ Theorem (Drozd ∼1977) A quiver is either tame or wild

▶ Theorem (Drozd ∼1977) A finite dimensional algebra is either tame or wild

Tame ↭ at most one-parameter families of inde.

Wild ↭ at least as complicated as any other quiver

We will use the same notions for finite dimensional algebras

Example (Higman ∼1953)
K[G ] (G a finite group and K = K of char p, p|#G) is finite

⇔
the p-Sylow subgroups of G are cyclic

Example (Bondarenko–Drozd ∼1977)
K[G ] (G a finite group and K = K of char p, p|#G) is infinite tame

⇔
p = 2 and the 2-Sylow subgroups of G are dihedral, semidihedral or generalized quaternion

Essentially nothing is tame

Example

The symmetric group Sn = Aut({1, ..., n}) is finite/C

Example (Putcha ∼1997)

The transformation monoid Tn = End({1, ..., n}) is wild/C unless n ≤ 4

The infinite setting gets much more difficult (and that is why its skipped)

Example

1 is tame and TAME

Example (Ringel ∼1979)

1 2 is tame but WILD

Capital spelling = same as before but including ∞-dim. reps

Classifying inde. of the Jordan quiver
is the same as classifying them for C[X ]

and C[X ] is a PID so M ∼= (free)i ⊕ (fdim)j

bilinear: , trilinear:

Theorem (Horn–Sergeichuk ∼2006, but parts are much older)
Classification of bilinear forms ⇔ classification of matrix congruence A = PTBP

with normal form pieces given by Jn(0) and

The trilinear analog is beyond hopeless
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There is still much to do...

Thanks for your attention!
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Matrix problems

▶ Task Classify vector spaces up to isomorphism

▶ Solution Theorem (folklore ≪1900) The dimension determines the vector space

▶ Thus, vector spaces are classified by one discrete parameter

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Matrix problems

Jordan normal form (JNF):
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Matrix problems

▶ Theorem (folklore ≪1900) Two matrices are equivalent if and only if they
have the same nameless/Smith normal form as above

▶ Thus, equivalence for m = 1 is classified by:

one discrete parameter = the rank
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That is however not always necessary
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but let us postpone that to the next talk
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Matrix problems
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So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Matrix problems

▶ Equivalence has a nice solution for m = 1 and is doable for m = 2

▶ For m = 3 this is extremely difficult

So that this does not get completely bonkers:

I always work over the complex numbers and fdim. reps

That is however not always necessary

Vector space example For a fixed size, there is no continuous parameter

Jordan example For a fixed size, there is only one continuous parameter

Thus, there is at most one continuous parameter per fixed discrete parameter

The problem is that A and B are unrelated
and making A “easier” doesn’t imply anything about B

I will describe some approach to the
simultaneous similarity problem

but let us postpone that to the next talk

Observe complexity jumps :

Similarity m = 0 is trivial, m = 1 is ok, m = 2 is terrible

Equivalence m = 1 is easy, m = 2 is ok, m = 3 is terrible
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Quiver representations

▶ Theorem (Yoshii ∼1956, Gabriel ∼ 1972) A connected quiver Q without

oriented cycles has finitely many indecomposables if and only if Q is of ADE type

▶ In this case # indecomposables = # positive roots Discrete parameters!

Goal

Design representations and equivalence of these representations such that

the indecomposables mod iso correspond to the Jordan-type blocksPicture stolen from Geordie Williamson

Simple = no substructure, indecomposable = M ∼= X ⊕ Y implies X ∼= 0 or Y ∼= 0
These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
e.g. 100, 010, 001, 110, 011 and 111

Dlab–Ringel ∼1973 found a generalization to all finite Dynkin types

Heng ∼2023 found a generalization to all finite Coxeter types

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver↭
Class 1 Cn ⇒ Cn+1 with (idn, 0) and Ln

Class 2 Cn+1 ⇒ Cn with (idn, 0)
T and LT

n

Class 3 Cn ⇒ Cn with idn and Jn(λ)

To be more precise:
one still needs to work to get the actual

classification; the theorems only

give an overall parametrization scheme

We get:

3 subspace problem Discrete

4 subspace problem One parameter

5 subspace problem Wild (for now: wild=¬tame)

Matrices and quivers Or: Complexity jumps August 2023 4 / 6

Quiver representations

▶ Theorem (Donovan–Freislich, Nazarova ∼1973) A (usual adjectives)

quiver Q has tame rep type if and only if Q is of finite or affine ADE type

▶ Tame = indecomposables can form countably many one-parameter families;
infinite tame = tame but not finite

Goal

Design representations and equivalence of these representations such that

the indecomposables mod iso correspond to the Jordan-type blocksPicture stolen from Geordie Williamson

Simple = no substructure, indecomposable = M ∼= X ⊕ Y implies X ∼= 0 or Y ∼= 0
These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
e.g. 100, 010, 001, 110, 011 and 111

Dlab–Ringel ∼1973 found a generalization to all finite Dynkin types

Heng ∼2023 found a generalization to all finite Coxeter types

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver↭
Class 1 Cn ⇒ Cn+1 with (idn, 0) and Ln

Class 2 Cn+1 ⇒ Cn with (idn, 0)
T and LT

n

Class 3 Cn ⇒ Cn with idn and Jn(λ)

To be more precise:
one still needs to work to get the actual

classification; the theorems only

give an overall parametrization scheme

We get:

3 subspace problem Discrete

4 subspace problem One parameter

5 subspace problem Wild (for now: wild=¬tame)
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Quiver representations

Problem Classification Quiver

Vector space Discrete 1

Equivalence One parameter 1

Double equivalence Wild 1

Similarity Discrete 1 2

Double similarity One parameter 1 2

Triple similarity Wild 1 2

3 subspace Discrete
0

1

2

3

4 subspace One parameter 0

12

34

5 subspace Wild 0

1

2

3

4

5

▶ Mind the gap!

Goal

Design representations and equivalence of these representations such that

the indecomposables mod iso correspond to the Jordan-type blocksPicture stolen from Geordie Williamson

Simple = no substructure, indecomposable = M ∼= X ⊕ Y implies X ∼= 0 or Y ∼= 0
These are very different!

Semisimple ⇔ simple=indecomposable ⇔ the quiver has no edges Semisimplicity is rare

Example
The Jordan quiver has a one parameter family of 1d simples (up to iso – I drop this)

But arbitrary dim. indecomposables↭ Jordan blocks

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of 0 = 0 and 1 = C
e.g. 100, 010, 001, 110, 011 and 111

Dlab–Ringel ∼1973 found a generalization to all finite Dynkin types

Heng ∼2023 found a generalization to all finite Coxeter types

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver↭
Class 1 Cn ⇒ Cn+1 with (idn, 0) and Ln

Class 2 Cn+1 ⇒ Cn with (idn, 0)
T and LT

n

Class 3 Cn ⇒ Cn with idn and Jn(λ)

To be more precise:
one still needs to work to get the actual

classification; the theorems only

give an overall parametrization scheme

We get:

3 subspace problem Discrete

4 subspace problem One parameter

5 subspace problem Wild (for now: wild=¬tame)
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Dichotomy (or trichotomy, depending on who you ask)

▶ Theorem (Drozd ∼1977) A quiver is either tame or wild

▶ Theorem (Drozd ∼1977) A finite dimensional algebra is either tame or wild

Tame ↭ at most one-parameter families of inde.

Wild ↭ at least as complicated as any other quiver

We will use the same notions for finite dimensional algebras

Example (Higman ∼1953)
K[G ] (G a finite group and K = K of char p, p|#G) is finite

⇔
the p-Sylow subgroups of G are cyclic

Example (Bondarenko–Drozd ∼1977)
K[G ] (G a finite group and K = K of char p, p|#G) is infinite tame

⇔
p = 2 and the 2-Sylow subgroups of G are dihedral, semidihedral or generalized quaternion

Essentially nothing is tame

Example

The symmetric group Sn = Aut({1, ..., n}) is finite/C

Example (Putcha ∼1997)

The transformation monoid Tn = End({1, ..., n}) is wild/C unless n ≤ 4

The infinite setting gets much more difficult (and that is why its skipped)

Example

1 is tame and TAME

Example (Ringel ∼1979)

1 2 is tame but WILD

Capital spelling = same as before but including ∞-dim. reps

Classifying inde. of the Jordan quiver
is the same as classifying them for C[X ]

and C[X ] is a PID so M ∼= (free)i ⊕ (fdim)j

bilinear: , trilinear:

Theorem (Horn–Sergeichuk ∼2006, but parts are much older)
Classification of bilinear forms ⇔ classification of matrix congruence A = PTBP

with normal form pieces given by Jn(0) and

The trilinear analog is beyond hopeless
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There is still much to do...

Thanks for your attention!
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