Matrices and moduli

August 2023

Matrix problems - the algebraic approach

- Recall Some matrix problems can be associated with quivers
- Recall Matrix problems are doable only in the finite and affine ADE types
- Otherwise, the algebraic approach is doomed to fail and classifications get wild

Today

A geometric approach to matrix problems following Reinecke's Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

Matrix problems - the algebraic approach

- The classification of inde. is hopeless in general
- But for almost all inde. the classification is actually pretty easy
- We will see this momentarily dimension vector \boldsymbol{d} wise

Matrix proble

General phenomena
"Really difficult"
often means
"easy almost all of the time, but hard for some cases"

I will show you now a fun example of this phenomena!

- The classi
- But for all

The example is not related to quivers but this is how I learned this stuff ;-) and we go back to quivers afterwards

- We will see this momentarily dimension vector \boldsymbol{d} wise

Matrix problems - the algebraic approach

Almost all (random) graphs are Hamiltonian; almost no (random) graph is Eulerian

- Hamiltonian = has a cycles that visits all vertices; Eulerian = has a cycles that visits all edges; looks similar, but is different:

Hamiltonian

Not Hamiltonian

- Crucial (Almost all \neq all) and (almost no \neq no) !
- Checking whether a graph is Hamiltonian is NP complete $=$ difficult as hell
- But for almost all graphs there are efficient algorithm to check this
- So the difficulty is very concentrated

Matrix problems - the algebraic approach

- But for almost all graphs there are efficient algorithm to check this
- So the difficulty is very concentrated

Matrix problems - the algebraic approach

Triple Kronecker: $K^{3}=(1) 2$

Kronecker's normal form for

$$
J_{n}(\lambda)=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right), \quad i d_{n}=\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

$(A, B) \approx\left(A^{\prime}, B^{\prime}\right)$

$$
L_{n}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \ddots & \ddots & & \\
& & 0 & 1 & \\
& & & 0 & 1
\end{array}\right), \quad L_{n}^{T}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \ddots & \ddots & & \\
& & 0 & 1 & \\
& & & 0 & 1
\end{array}\right)^{T}
$$

- Take $\boldsymbol{d}=(n, n)$ for K^{3}
- Assume that A is invertible, B is diagonalizable with pairwise different eigenvalues
- Using Kronecker's normal form we can assume that

$$
A=i d_{n} \text { and } B=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Matrix problems - the algebraic approach

Matrix problems - the algebraic approach

Triple Kronecker: $K^{3}=(1) 2$

Kronecker's normal form for

$$
J_{n}(\lambda)=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right), \quad i d_{n}=\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$ $(A, B) \approx\left(A^{\prime}, B^{\prime}\right)$

$$
L_{n}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \ddots & \ddots & & \\
& & 0 & 1 & \\
& & & 0 & 1
\end{array}\right), \quad L_{n}^{T}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \ddots & \ddots & & \\
& & 0 & 1 & \\
& & & 0 & 1
\end{array}\right)^{T}
$$

- The subgroup $H \subset G L_{n} \times G L_{n}$ fixing (A, B) consists of diagonal matrices $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ acting on C by conjugation: $c_{i, j} \mapsto h_{i} / h_{j} \cdot c_{i, j}$
- Thus, we can assume that

$$
C=\left(\begin{array}{cccc}
c_{1,1} & c_{1,2} & \ldots & c_{1, n} \\
1 & c_{1,2} & c_{1, n} \\
c_{3,1} & 1 & \cdots & c_{2, n} \\
c_{1, n} & c_{2, n} \\
c_{n, 1} & c_{n, 2} & \ldots & \ldots \\
c_{3, n-1} & 1 & c_{3, n} \\
c_{1, n}
\end{array}\right), \quad c_{i, j} \neq 0
$$

Theorem (folklore ~1970s)

Almost all inde. K^{3}-reps with dimension (vector) (n, n) are of the form $\left(i d_{n}, \operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{n}\right), C\right)$ as in the background

A bit more effort shows something similar for other dimensions vectors and quivers
The bait It is often very easy to classify almost all indecomposables
Kronecker's normal form for

- The subgroup $H \subset G L_{n} \times G L_{n}$ fixing (A, B) consists of diagonal matrices $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ acting on C by conjugation: $c_{i, j} \mapsto h_{i} / h_{j} \cdot c_{i, j}$
- Thus, we can assume that

$$
C=\left(\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n-1} \\
1 & c_{1, n} \\
c_{2,2} & \cdots & c_{2, n-n} & c_{2, n} \\
c_{3,1} & 1 & \cdots & c_{3, n-1} \\
c_{n, 1} & c_{n, 2} & \cdots & 1
\end{array}\right), \quad c_{1, j}, \ldots 0
$$

Theorem (folklore ~1970s)

Almost all inde. K^{3}-reps with dimension (vector) (n, n) are of the form $\left(i d_{n}, \operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{n}\right), C\right)$ as in the background

A bit more effort shows something similar for other dimensions vectors and quivers
The bait It is often very easy to classify almost all indecomposables
Kronecker's norm This is the ignore the black sheep strategy $(A, B) \approx(A$

- The subgroup $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ are very successful in all of math and even life
- Thus, we can assume that

$$
C=\left(\begin{array}{ccccc}
c_{1,1} & c_{1,2} & \ldots & c_{1, n-1} & c_{1, n} \\
1 & c_{2,2} & \ldots & c_{2, n-1} & c_{2, n} \\
c_{3,1} & 1 & \ldots & c_{3, n-1} & c_{3, n} \\
c_{n, 1} & c_{n, 2} & \ldots & 1 & c_{1, n}
\end{array}\right), \quad c_{i, j} \neq 0
$$

Theorem (folklore ~1970s)

Almost all inde. K^{3}-reps with dimension (vector) (n, n) are of the form $\left(i d_{n}, \operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{n}\right), C\right)$ as in the background

A bit more effort shows something similar for other dimensions vectors and quivers
The bait It is often very easy to classify almost all indecomposables
Kronecker's norm This is the ignore the black sheep strategy

- The subgroup $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ are very successful in all of math and even life
Thus
The catch This "generic" classification kills a lot

Example

For the Jordan quiver

(1)a generic classification reduces to diagonalizable matrices completely missing the Jordan normal form

Matrix problems - the algebraic approach

Theorem (Kac~1980)

For an arbitrary quiver we only have two cases:
(a) If \boldsymbol{d} is a positive real root, then \exists inde. rep. with dimension \boldsymbol{d}
(b) If \boldsymbol{d} is a positive imaginary root, then \exists inde. rep. with dimension \boldsymbol{d} parametrized by $1-1 / 2(\boldsymbol{d}, \boldsymbol{d})$ parameters

Example (type D_{4})

SageMath with Phi = RootSystem(['D',4]).root_poset(); produces:

The 3 -subspace problem is of finite representation type $\left(D_{4}\right)$; the indecomposables are (up to "permutation of legs"):

Moduli spaces - semisimple case

- Basic idea Fix \boldsymbol{d}, and M of dimension \boldsymbol{d}, and consider the affine \mathbb{C}-space

$$
R_{\boldsymbol{d}}=R_{\boldsymbol{d}}(Q)=\bigoplus_{i \rightarrow j} \operatorname{hom}_{\mathbb{C}}\left(M_{i}, M_{j}\right)
$$

$G_{\boldsymbol{d}}=\prod_{i} G L\left(M_{i}\right)$ acts on $R_{\boldsymbol{d}}$ via base change, and $G_{\boldsymbol{d}}$-orbits correspond bijectively to the iso. classes of Q-reps of dimension \boldsymbol{d}

- Task Find a subset $U \subset R_{\boldsymbol{d}}$, an algebraic variety X and a morphism $\pi: U \rightarrow X$ whose fibers are precisely the $G_{\boldsymbol{d}}$-orbits in U

Moduli snaces - semisimnle case

Problem

Take the 5-Kronecker quiver (1) (2) and $M(\lambda, \mu)$ for $(\lambda, \mu) \neq(0,0)$ and $\boldsymbol{d}=(2,3)$:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],[$
$\left.\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
, $[$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{l}0 \\ \lambda \\ 0\end{array}\right.$
 $\left[\begin{array}{ll}0 & \mu \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Lemma (easy) $M(\lambda, \mu) \cong M(\alpha, \beta)$ if and only if $\exists t \in \mathbb{C}^{*}$ such that $\lambda=t \alpha$ and $\mu=t^{-1} \beta$ Let U be the set of all $M(\lambda, \mu)$
Then $\lim _{\lambda \rightarrow 0} M(\lambda, 1)=M(0,1)$ and $\lim _{\mu \rightarrow 0} M(1, \mu)=M(1,0)$ in U
Hence, there can not be a continuous map $\pi: U \rightarrow X$ since

$$
M(\lambda, 1) \cong M(1, \mu) \text { but } M(0,1) \nsubseteq M(1,0)
$$

bijectively to the iso. classes of Q-reps of dimension d

- Task Find a subset $U \subset R_{\boldsymbol{d}}$, an algebraic variety X and a morphism $\pi: U \rightarrow X$ whose fibers are precisely the G_{d}-orbits in U

Moduli snaces - semisimnle case

Problem

Take the 5-Kronecker quiver (1) (2) and $M(\lambda, \mu)$ for $(\lambda, \mu) \neq(0,0)$ and $\boldsymbol{d}=(2,3)$:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],[$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$

$\left.\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ \lambda & 0 \\ 0 & 0\end{array}\right],[$
0μ $0 \quad 0$
$0 \quad 0$

Lemma (easy) $M(\lambda, \mu) \cong M(\alpha, \beta)$ if and only if $\exists t \in \mathbb{C}^{*}$ such that $\lambda=t \alpha$ and $\mu=t^{-1} \beta$ Let U be the set of all $M(\lambda, \mu)$
Then $\lim _{\lambda \rightarrow 0} M(\lambda, 1)=M(0,1)$ and $\lim _{\mu \rightarrow 0} M(1, \mu)=M(1,0)$ in U
Hence, there can not be a continuous map $\pi: U \rightarrow X$ since

$$
M(\lambda, 1) \cong M(1, \mu) \text { but } M(0,1) \nsubseteq M(1,0)
$$

bijectively to the iso. classes of Q-reps of dimension \mathbb{d}
The above example is just one of the typical problems in defining quotients:
it shows that the potential "orbit space U / G_{d} " would be non-separated Usually set-theoretical quotients have a bad topology - need something better!

Moduli spaces - semisimple case

- $G_{\boldsymbol{d}}$ acts on $R_{\boldsymbol{d}}$ as before, (X, π) should be universal
- In the cat. of sets with a $G_{\boldsymbol{d}}$-action we get the "bad" quotient $X=R_{\boldsymbol{d}} / G_{\boldsymbol{d}}$, in the cat. of alg. varieties with a $G_{\boldsymbol{d}}$-action we get the "better" quotient $X=R_{\boldsymbol{d}} / / G_{\boldsymbol{d}}$
- Theorem ((Hilbert-)Mumford $\sim(1893) 1965,) R_{\boldsymbol{d}} / / G=\operatorname{Spec}\left(\mathbb{C}\left[R_{\boldsymbol{d}}\right]^{G_{d}}\right)$ and parametrizes the closed orbits

Moduli spaces - semisimple case

- Theorem (Le Bruyn-Procesi ~1990) $R_{\boldsymbol{d}} / / G=\operatorname{Spec}\left(\mathbb{C}\left[R_{d}\right]^{G_{d}}\right)$ and parametrizes iso. classes of semisimple Q-reps of dimension \boldsymbol{d}
- Closed orbit \Leftrightarrow semisimple
- Call $M_{\boldsymbol{d}}^{s s}=R_{\boldsymbol{d}} / / G$ the moduli space of semisimple Q-reps of dimension \boldsymbol{d}

Moduli spaces - semisimple case

"Proof" of Closed orbit \Leftrightarrow semisimple

If a Q-rep of dimension 2 of (1) is not semisimple then we can assume that we have the matrix $\left(\begin{array}{cc}\lambda & t \\ 0 & \lambda\end{array}\right)$ For $t \neq 0$ this is a nontrivial Jordan block up to base change

For $t=0$ this is a direct sum of two $1 d$ simples
Thus, the orbit of the nontrivial Jordan block is not closed and looks like

- Call $M_{\boldsymbol{d}}^{\text {ss }}=R_{\boldsymbol{d}} / / G$ the moduli space of semisimple Q-reps of dimension \boldsymbol{d}

For $\boldsymbol{d}=(1,1)$, the action of $G_{\boldsymbol{d}} \cong \mathbb{C}^{*}$ is $t(x, y)=(t x, t y)$ and $t(x, y)=\left(t x, t^{-1} y\right)$ The orbit spaces are as above
The closed orbits are $(0,0)$; plus hyperbolas on the right We miss a lot!

Example (left: 1) \rightleftarrows (2), right: $(1) \rightleftarrows$ (2)

For $\boldsymbol{d}=(1,1)$, the action of $G_{\boldsymbol{d}} \cong \mathbb{C}^{*}$ is $t(x, y)=(t x, t y)$ and $t(x, y)=\left(t x, t^{-1} y\right)$ The orbit spaces are as above
The closed orbits are $(0,0)$; plus hyperbolas on the right We miss a lot!

Moduli spaces - semisimple case

Example (Jordan quiver 1))
$\boldsymbol{d}=(2), G_{\boldsymbol{d}}=G L_{2}(\mathbb{C})$ acting on $R_{\boldsymbol{d}}=M a t_{2}(\mathbb{C})$ by conjugation
There are "obvious" $G L_{2}(\mathbb{C})$-invariant functions:
the trace $\operatorname{tr}\left(_\right)$and the determinant $\operatorname{det}\left(_{-}\right)$
Lemma $\mathbb{C}\left[M a t_{2}(\mathbb{C})\right]^{G L_{2}(\mathbb{C})}$ is generated by $\operatorname{tr}\left({ }_{-}\right)$and $\operatorname{det}\left(_\right)$
Lemma $\operatorname{tr}\left(_\right)$and $\operatorname{det}\left(_\right)$are algebraically independent
Hence, $\mathbb{C}\left[\operatorname{Mat}_{2}(\mathbb{C})\right]^{G L_{2}(\mathbb{C})} \cong \mathbb{C}[X, Y]$ and $M a t_{2}(\mathbb{C}) / / G L_{2}(\mathbb{C})$ is affine 2-space

- Theorem (Le Bruyn-Procesi $\sim 1990) R_{\boldsymbol{d}} / / G=\operatorname{Spec}\left(\mathbb{C}\left[R_{\boldsymbol{d}}\right]^{G_{\boldsymbol{d}}}\right.$) and parametrizes iso. classes of semisimple Q-reps of dimension \boldsymbol{d}
- Closed orbit \Leftrightarrow semisimple
- Call $M_{\boldsymbol{d}}^{s s}=R_{\boldsymbol{d}} / / G$ the moduli space of semisimple Q-reps of dimension \boldsymbol{d}

Moduli spaces - semisimple case

Example (Jordan quiver (1) - second)

For $\boldsymbol{d}=(n)$ we have that $\mathbb{C}\left[\operatorname{Mat}_{n}(\mathbb{C})\right]^{G L_{n}(\mathbb{C})}=\mathbb{C}\left[e_{i}\left(_\right) \mid i=1, \ldots, n\right]$
The $e_{i}\left(_\right)$are the coefficients of the characteristic polynomial
Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

- Call $M_{\boldsymbol{d}}^{\text {ss }}=R_{\boldsymbol{d}} / / G$ the moduli space of semisimple Q-reps of dimension \boldsymbol{d}

Moduli spaces - semisimple case

- Theorem (Le Bruyn-Procesi $\sim 1990) \mathbb{C}\left[R_{d}\right]^{G_{d}}$ is generated by "traces along oriented cycles"
- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

Moduli spaces - semisimple case

- Theorem (Le Bruyn-Procesi ~ 1990) $\mathbb{C}\left[R_{d}\right]^{G_{d}}$ is generated by "traces along oriented cycles"
- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

Moduli spaces - semisimple case

Example (Jordan quiver (1) - third)

We only need to be able to calculate the eigenvalues so we could also take $\operatorname{tr}(A), \operatorname{tr}\left(A^{2}\right)$ etc. as ring generators

- Theorem (Le Bruyn-Procesi $\sim 1990) \mathbb{C}\left[R_{d}\right]^{G_{d}}$ is generated by "traces along oriented cycles"
- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

- Theorem (Le Bruyn-Procesi $\sim 1990) \mathbb{C}\left[R_{d}\right]^{G_{d}}$ is generated by "traces along oriented cycles"
- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

Moduli ss Example (c(1)ァ)

For $\boldsymbol{d}=(2)$ one can show that $\mathbb{C}\left[\operatorname{Mat}_{n}(\mathbb{C}) \times \operatorname{Mat}_{n}(\mathbb{C})\right]^{G L_{n}(\mathbb{C})}$ is generated by $\operatorname{tr}(A) \operatorname{tr}\left(A^{2}\right), \operatorname{tr}(A B)=\operatorname{tr}(B A), \operatorname{tr}(B)$ and $\operatorname{tr}\left(B^{2}\right)$

Moreover, $R_{d} / / G_{d}$ is affine 5 -space
Example (1) $\underset{t}{\stackrel{s}{\leftrightarrows}}(2)$ with s and t arrows)
For $\boldsymbol{d}=(1,1)$ one can show that the invariant ring is generated by $\operatorname{tr}\left(s_{i} t_{j}\right)=s_{i} t_{j}$

Moreover, $R_{d} / / G_{d} \cong \operatorname{Cone}\left(\mathbb{P}^{s-1} \times \mathbb{P}^{t-1} \hookrightarrow \mathbb{P}^{s+t-1}\right)$ (via Segre embedding)

Moduli spaces - semisimple case

Beyond these cases this gets very difficult
OUR FIELD HAS BEEN STRUGGLING WITH THIS PROBLEM FOR YEARS.
STRUGGLE NO MORE!
I'M HERE TO SOLVE
IT WITH ALGORITHMS!

oriented cycles"

- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

Moduli spaces - semisimple case

Note that this geometric approach is a bit better than the algebraic "generic" results

- Problem 1 The theory is trivial for quivers without oriented cycles
- Problem 2 In general, we loose a lot, e.g. the Jordan normal form for 1 -

Moduli spaces - beyond semisimple

- Issue The GIT approach only sees closed orbits = semisimple things
- Left Getting rid of the origin would "solve" that issue
- Right Getting rid of the origin and one axis would "solve" that issue

Moduli spaces - beyond semisimple

- Issue The GIT approach only sees closed orbits = semisimple things
- Left Getting rid of the origin would "solve" that issue
- Right Getting rid of the origin and one axis would "solve" that issue

Moduli spaces - beyond semisimple

- Choose a character $\chi: G_{\boldsymbol{d}} \rightarrow \mathbb{C}^{*}$, e.g. the determinant
- χ-semiinvariants $\mathbb{C}\left[R_{d}\right]_{\chi}^{G_{d}}=\left\{f \mid f(g \subset v)=\chi(g)^{N} f(v)\right.$ for some weight $\left.N\right\}$; graded by weight
- χ-semistable $R_{\boldsymbol{d}}^{\text {sst }}=\{v \mid f(v) \neq 0$ for some f of weight $>0\}$
- Quotient $\pi: R_{\boldsymbol{d}}^{\text {sst }} \rightarrow \operatorname{Proj}\left(\mathbb{C}\left[R_{\boldsymbol{d}}\right]_{\chi}^{G_{d}}\right)=R_{\boldsymbol{d}}^{\text {sst }} / / G_{\boldsymbol{d}}$
- Theorem (Mumford ~ 1965) $M^{\text {stt }}=R_{\boldsymbol{d}}^{\text {sst }} / / G_{\boldsymbol{d}}$ parametrizes the closed orbits in $R_{\boldsymbol{d}}^{\text {sst }}$
- Recall that $\operatorname{Proj}(S)=\left\{P \subset S\right.$ homogeneous and prime with $\left.S_{+} \not \subset P\right\}$

Moduli spaces - beyond semisimple

- Character $\chi=\operatorname{det}$ (equals id since 1 d case)
- χ-semistable points $R_{(1,1)}^{\text {sst }} \cong \mathbb{C}^{2} \backslash\{(0,0)\}$
- Invariants and moduli $\mathbb{C}\left[R_{(1,1)}^{\text {sst }}\right)_{\chi}^{G_{d}} \cong \mathbb{C}\left[X_{\text {deg } 1}, Y_{\operatorname{deg} 1}\right]$ and $\operatorname{Proj}(\mathbb{C}[X, Y])=\mathbb{P}^{1}$

Moduli spaces - beyond semisimple

- Character $\chi=\operatorname{det}$ (equals id since 1d case)
- χ-semistable points $R_{d}^{\text {sst }} \cong \mathbb{C}^{2} \backslash y$-axis
- Invariants and moduli $\mathbb{C}\left[R_{d}^{s s t}\right]_{\chi}^{G_{d}} \cong \mathbb{C}\left[X Y_{\operatorname{deg} 0}, X_{\operatorname{deg} 1}\right]$ and $\operatorname{Proj}(\mathbb{C}[X Y, X])=\mathbb{A}^{1}$

Moduli spaces - beyond semisimple

- Choose $\Theta \in(\mathbb{Z} \text { vertices) })^{*}$, and define the slope $=\Theta(\boldsymbol{d}(V)) / \operatorname{dim} V \in \mathbb{Q}$
- Define

Θ-semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable	same but with $<$
Θ-polystable	direct sum of Θ-stable of the same slope

Theorem (King, Schofield-van den Bergh ~1994)
Moduli space $R_{d}^{s s t}\left(\right.$ for χ_{Θ} obtained from $\left.\Theta\right)=\Theta$-semistable reps; and $M^{\text {sst }}=R_{\boldsymbol{d}}^{s s t} / / G_{\boldsymbol{d}} \stackrel{1: 1}{\longleftrightarrow} \Theta$-polystable reps of dimension \boldsymbol{d}

- Choose $\Theta \in(\mathbb{Z} \text { vertices })^{*}$, and define the slope $=\Theta(\boldsymbol{d}(V)) / \operatorname{dim} V \in \mathbb{Q}$
- Define

Θ-semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable	same but with $<$
Θ-polystable	direct sum of Θ-stable of the same slope

Theorem (King, Schofield-van den Bergh ~1994)
Moduli space $R_{d}^{s s t}\left(\right.$ for χ_{Θ} obtained from $\left.\Theta\right)=\Theta$-semistable reps; and $M^{s s t}=R_{\boldsymbol{d}}^{\text {sst }} / / G_{\boldsymbol{d}} \stackrel{1: 1}{\longleftrightarrow} \Theta$-polystable reps of dimension \boldsymbol{d}

Example

Take $\Theta=0$ so that $\chi(g)=1$, then the slope is always zero

$$
\begin{gathered}
\Theta \text {-semistable }=\text { all } Q \text {-reps } \\
\Theta \text {-stable }=\text { simple } Q \text {-reps } \\
\Theta \text {-polystable }=\text { semisimple } Q \text {-reps }
\end{gathered}
$$

We thus recover the setting from before

-10	-5	0	5	10
	x			

- Choose $\Theta \in(\mathbb{Z} \text { vertices })^{*}$, and define the slope $=\Theta(\boldsymbol{d}(V)) / \operatorname{dim} V \in \mathbb{Q}$
- Define

Θ-semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable	same but with $<$
Θ-polystable	direct sum of Θ-stable of the same slope

Theorem (King, Schofield-van den Bergh ~1994)
Moduli space $R_{d}^{s s t}\left(\right.$ for χ_{Θ} obtained from $\left.\Theta\right)=\Theta$-semistable reps; and $M^{\text {sst }}=R_{\boldsymbol{d}}^{\text {sst }} / / G_{\boldsymbol{d}} \stackrel{1: 1}{\longleftrightarrow} \Theta$-polystable reps of dimension \boldsymbol{d}

Example

Take $\Theta=0$ so that $\chi(g)=1$, then the slope is always zero

$$
\begin{gathered}
\Theta \text {-semistable }=\text { all } Q \text {-reps } \\
\Theta \text {-stable }=\text { simple } Q \text {-reps } \\
\Theta \text {-polystable }=\text { semisimple } Q \text {-reps }
\end{gathered}
$$

We thus recover the setting from before

$$
\begin{gathered}
\hline \hline \text { Example }(1) \underset{(2)}{\longrightarrow} \text { with } m \geq 2 \text { edges) } \\
\text { Take } \Theta\left(d_{1}, d_{2}\right)=d_{1}, \text { and } d=(1, d \leq m) \\
\Theta \text {-semistable }=\text { all } Q \text {-reps } \\
M^{\text {sst }}=\text { Grassmannian } G(d, m)
\end{gathered}
$$

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension $(1, d)$ is a collection of m column vectors of size d
The determinants of the $\binom{m}{d}-1$ minors generate the invariants
These satisfy the Plücker relations

Theorem (King, Schofield-van den Bergh ~1994)
Moduli space $R_{d}^{s s t}\left(\right.$ for χ_{Θ} obtained from $\left.\Theta\right)=\Theta$-semistable reps; and $M^{\text {sst }}=R_{\boldsymbol{d}}^{\text {sst }} / / G_{\boldsymbol{d}} \stackrel{1: 1}{\longleftrightarrow} \Theta$-polystable reps of dimension \boldsymbol{d}

Example

Take $\Theta=0$ so that $\chi(g)=1$, then the slope is always zero

$$
\begin{gathered}
\Theta \text {-semistable }=\text { all } Q \text {-reps } \\
\Theta \text {-stable }=\text { simple } Q \text {-reps } \\
\Theta \text {-polystable }=\text { semisimple } Q \text {-reps }
\end{gathered}
$$

We thus recover the setting from before

$$
\begin{gathered}
\hline \hline \text { Example }(1) \underset{2}{\longrightarrow} \text { with } m \geq 2 \text { edges) } \\
\text { Take } \Theta\left(d_{1}, d_{2}\right)=d_{1}, \text { and } d=(1, d \leq m) \\
\Theta \text {-semistable }=\text { all } Q \text {-reps } \\
M^{\text {sst }}=\text { Grassmannian } G(d, m)
\end{gathered}
$$

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension $(1, d)$ is a collection of m column vectors of size d
The determinants of the $\binom{m}{d}-1$ minors generate the invariants These satisfy the Plücker relations
-polystade $\left|\mid\right.$ In general computations are difficult $^{\text {ne }}$ same slope

Moduli spaces - beyond semisimple

- For every $\Theta \neq 0$ and every Q-rep M there \exists ! filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{k}=M
$$

such that:

- M_{i} / M_{i-1} is Θ-stable
- The slope of the M_{i} / M_{i-1} is strictly decreasing
- For $\Theta=0$ the above "specializes" to the Jordan-Hölder theorem
- We can thus (at least in some sense) describe all Q-reps

Matrix problems - the algebraic approach

- Recall somir matrix problems can be associated with quivers
- Recall Matrio problems are doable only in the finite and affine ADE types
- Otherwise, the 山getraic approach is doomed to fail and cusitations get widd

Moduli spaces - beyond semisimple
Mumford's/magic

- Choses a character $x: G_{d} \rightarrow \mathrm{C}^{+}$, e. . the determinani

graded by weight
- $x_{\text {-semistable }} R_{d}^{\text {ar }}-\{v \mid f(v) \neq 0$ for some f of weight $>0\}$
- Quotient m: $R_{d}^{\text {art }} \rightarrow P_{\text {roj }}\left(\left[\mid\left[R_{d}\right]_{\Sigma_{0}}\right)-R_{d}^{\text {at }} / / \sigma_{d}\right.$

- Recall that Proj $(S)-(P \subset S$ homagencous and prime with $S, \mathbb{Q} P)$

- Bat for almast all grapls there are efficient algonition to check this
- So the difificity in very concontiatided

Wo miss a bet

Moduli spaces - beyond semisimple

- For every $\theta \neq 0$ and every Q-rep M there $\exists 11$ firtation
$0-M_{0} \subset M_{1} \subset \ldots \subset M_{1}-M$
sech that:
- M_{j} / M_{-1} is e-stable
- The slope of the M / M_{i-1} is strictly decreasing
- For θ - 0 the above "pecializes" to the Jordan-Hollder theorem

We can this (at least in some sense) describe all Q-reps

- Choose $\Theta \in(\text { Zvericices })^{\prime}$, and define the slope $-\Theta(d(V)) / \operatorname{dim} V \in Q$
- Define

E-क्रable	same but woth
Q-polystable	direct sum of θ estable of the same slope

There is still much to do..

Matrix problems - the algebraic approach

- Recall somir matnix problems can be asociated with quivers
- Recall Matrio problems are doable only in the finite and affine ADE types
- Otherwise, the 山gstraik approach is doomed to fail and curstations get widd

Moduli spaces - beyond semisimple
Mumfordsmagic

- Choses a character $x: G_{d} \rightarrow C^{+}$, e. . the determinani
- x-semiinwariants $\mathrm{C}\left|R_{d}\right|_{N}^{\xi_{0}}=\left(f \mid f(g \mathrm{~g} v)-x(g)^{n} f(v)\right.$ for some weight N
graded by weight
- $x_{\text {-semistable }} R_{a}^{\text {aur }}-\{v \mid f(v) \neq 0$ for same f of weght $>0\}$
- Quotient m: $R_{d}^{\text {art }} \rightarrow P_{\text {roj }}\left(\left[\mid\left[R_{d}\right]_{\Sigma_{0}}\right)-R_{d}^{\text {at }} / / \sigma_{d}\right.$

- Recall that P ros $(S)-(P \subset S$ homageneous and prime with $S+\mathbb{Z})$

- Bat for almast all grapls there are efficient algonition to check this
- So the difificity in very concontiatided


``` The dowed arbins are \((0.0\}\) plua hyomoridas
Wo miss a bet
```

Moduli spaces - beyond semisimple

- For every $\theta \neq 0$ and every Q-rep M there $\exists 11$ firtation
$0-M_{0} \subset M_{1} \subset \ldots \subset M_{1}-M$
sech that:
- M_{j} / M_{-1} is e-stable
- The slope of the M / M_{i-1} is strictly decreasing
- For θ - 0 the above "pecializes" to the Jordan-Hollder theorem

We can this (at least in some sense) describe all Q-reps

Thanks for your attention!

