Matrices and moduli

Ma	trices	and	mod	luli

- Recall Some matrix problems can be associated with quivers
- Recall Matrix problems are doable only in the finite and affine ADE types
- Otherwise, the algebraic approach is doomed to fail and classifications get wild Matrices and moduli Or: Almost all = borine? August 2023

A geometric approach to matrix problems

following Reinecke's Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

Matrices and moduli

- ► The classification of inde. is hopeless in general
- ► But for almost all inde. the classification is actually pretty easy
- \blacktriangleright We will see this momentarily dimension vector \pmb{d} wise

D/J of r	COC	and	mod	
IVIALI	ICCS.	anu	IIIUu	un

Hamiltonian = has a cycles that visits all vertices; Eulerian = has a cycles that visits all edges; looks similar, but is different:

- Crucial (Almost all \neq all) and (almost no \neq no)!
- ► Checking whether a graph is Hamiltonian is NP complete = difficult as hell
- ► But for almost all graphs there are efficient algorithm to check this

► So the difficulty is very concentrated

Triple Kronecker:
$$K^3 = 1$$

 $J_n(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}, \quad id_n = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & & 1 \\ & & & 1 \end{pmatrix}$
Kronecker's normal form for
 $(A, B) \approx (A', B')$
 $L_n = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 & 1 \end{pmatrix}, \quad L_n^T = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & & 0 & 1 \\ & & & & 0 & 1 \end{pmatrix}^T$

- ▶ Take $\boldsymbol{d} = (n, n)$ for K^3
- ► Assume that A is invertible, B is diagonalizable with pairwise different eigenvalues
- ▶ Using Kronecker's normal form we can assume that

 $A = id_n$ and $B = diag(\lambda_1, ..., \lambda_n)$

Triple Kronecker:
$$\mathcal{K}^{3} = \underbrace{1}_{\lambda} \underbrace{2}$$

$$J_{n}(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}, \quad id_{n} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & & 1 & 1 \end{pmatrix}$$
Kronecker's normal form for
 $(\mathcal{A}, \mathcal{B}) \approx (\mathcal{A}', \mathcal{B}')$

$$L_{n} = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 & 1 \end{pmatrix}, \quad L_{n}^{T} = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & & 0 & 1 \\ & & & & 0 & 1 \end{pmatrix}^{T}$$

- ► The subgroup H ⊂ GL_n × GL_n fixing (A, B) consists of diagonal matrices diag(h₁,...,h_n) acting on C by conjugation: c_{i,j} → h_i/h_j · c_{i,j}
- ► Thus, we can assume that

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n-1} & c_{1,n} \\ 1 & c_{2,2} & \dots & c_{2,n-1} & c_{2,n} \\ c_{3,1} & 1 & \dots & c_{3,n-1} & c_{3,n} \\ \dots & \dots & \dots & \dots & c_{n,1} & c_{n,1} \end{pmatrix}, \quad c_{i,j} \neq 0$$

- The subgroup H ⊂ GL_n × GL_n fixing (A, B) consists of diagonal matrices diag(h₁,...,h_n) acting on C by conjugation: c_{i,j} → h_i/h_j · c_{i,j}
- ► Thus, we can assume that

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n-1} & c_{1,n} \\ 1 & c_{2,2} & \dots & c_{2,n-1} & c_{2,n} \\ c_{3,1} & 1 & \dots & c_{3,n-1} & c_{3,n} \\ \dots & \dots & \dots & \dots & c_{n,1} & c_{n,1} \end{pmatrix}, \quad c_{i,j} \neq 0$$

Matrices and moduli

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n-1} & c_{1,n} \\ 1 & c_{2,2} & \dots & c_{2,n-1} & c_{2,n} \\ c_{3,1} & 1 & \dots & \dots & c_{3,n-1} & c_{3,n} \\ \dots & \dots & \dots & \dots & 1 & c_{1,n} \end{pmatrix}, \quad c_{i,j} \neq 0$$

Matrices and moduli

Matrices and moduli

Basic idea Fix d, and M of dimension d, and consider the affine \mathbb{C} -space

$$R_d = R_d(Q) = \bigoplus_{i \to j} \hom_{\mathbb{C}}(M_i, M_j)$$

 $G_d = \prod_i GL(M_i)$ acts on R_d via base change, and G_d -orbits correspond bijectively to the iso. classes of Q-reps of dimension d

TaskFind a subset $U \subset R_d$, an algebraic variety X and a morphism $\pi: U \to X$ whose fibers are precisely the G_d -orbits in U

Problem

Take the 5-Kronecker quiver (1) and $M(\lambda, \mu)$ for $(\lambda, \mu) \neq (0, 0)$ and d = (2, 3): **Lemma (easy)** $M(\lambda,\mu) \cong M(\alpha,\beta)$ if and only if $\exists t \in \mathbb{C}^*$ such that $\lambda = t\alpha$ and $\mu = t^{-1}\beta$ Let U be the set of all $M(\lambda, \mu)$ Then $\lim_{\lambda\to 0} M(\lambda, 1) = M(0, 1)$ and $\lim_{\mu\to 0} M(1, \mu) = M(1, 0)$ in U Hence, there can not be a continuous map $\pi: U \to X$ since $M(\lambda, 1) \cong M(1, \mu)$ but $M(0, 1) \ncong M(1, 0)$ bijectively to the iso. classes of Q-reps of dimension d**Task** Find a subset $U \subset R_d$, an algebraic variety X and a morphism $\pi: U \to X$ whose fibers are precisely the G_d -orbits in U

Problem

Take the 5-Kronecker quiver (1) and $M(\lambda, \mu)$ for $(\lambda, \mu) \neq (0, 0)$ and d = (2, 3): $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \lambda & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \mu \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ **Lemma (easy)** $M(\lambda,\mu) \cong M(\alpha,\beta)$ if and only if $\exists t \in \mathbb{C}^*$ such that $\lambda = t\alpha$ and $\mu = t^{-1}\beta$ Let U be the set of all $M(\lambda, \mu)$ Then $\lim_{\lambda\to 0} M(\lambda,1) = M(0,1)$ and $\lim_{\mu\to 0} M(1,\mu) = M(1,0)$ in U Hence, there can not be a continuous map $\pi: U \to X$ since $M(\lambda, 1) \cong M(1, \mu)$ but $M(0, 1) \ncong M(1, 0)$ bijectively to the iso, classes of Q-reps of dimension

The above example is just one of the typical problems in defining quotients: it shows that the potential "orbit space U/G_d " would be non-separated Usually set-theoretical quotients have a bad topology – need something better!

- G_d acts on R_d as before, (X, π) should be universal
- ▶ In the cat. of sets with a G_d -action we get the "bad" quotient $X = R_d/G_d$, in the cat. of alg. varieties with a G_d -action we get the "better" quotient $X = R_d//G_d$
- ▶ Theorem ((Hilbert–)Mumford ~(1893,)1965) $R_d//G = Spec(\mathbb{C}[R_d]^{G_d})$ and parametrizes the closed orbits

- ▶ Theorem (Le Bruyn–Procesi ~1990) $R_d//G = Spec(\mathbb{C}[R_d]^{G_d})$ and parametrizes iso. classes of semisimple *Q*-reps of dimension *d*
- ► Closed orbit ⇔ semisimple

► Call $M_d^{ss} = R_d / / G$ the moduli space of semisimple Q-reps of dimension d

For d = (1, 1), the action of $G_d \cong \mathbb{C}^*$ is t(x, y) = (tx, ty) and $t(x, y) = (tx, t^{-1}y)$ The orbit spaces are as above The closed orbits are (0, 0); plus hyperbolas on the right We miss a lot!

For d = (1, 1), the action of $G_d \cong \mathbb{C}^*$ is t(x, y) = (tx, ty) and $t(x, y) = (tx, t^{-1}y)$ The orbit spaces are as above The closed orbits are (0, 0); plus hyperbolas on the right We miss a lot!

Moduli spaces - semisimple case

- ▶ Theorem (Le Bruyn–Procesi ~1990) $R_d//G = Spec(\mathbb{C}[R_d]^{G_d})$ and parametrizes iso. classes of semisimple *Q*-reps of dimension *d*
- ► Closed orbit ⇔ semisimple

► Call $M_d^{ss} = R_d / / G$ the moduli space of semisimple *Q*-reps of dimension *d*

► Theorem (Le Bruyn-Procesi ~1990) C[R_d]^{G_d} is generated by "traces along oriented cycles"

Problem 1 The theory is trivial for quivers without oriented cycles

• Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

► Theorem (Le Bruyn-Procesi ~1990) C[R_d]^{G_d} is generated by "traces along oriented cycles"

Problem 1 The theory is trivial for quivers without oriented cycles

• Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

► Theorem (Le Bruyn-Procesi ~1990) C[R_d]^{G_d} is generated by "traces along oriented cycles"

Problem 1 The theory is trivial for quivers without oriented cycles

• Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

► Theorem (Le Bruyn-Procesi ~1990) C[R_d]^{G_d} is generated by "traces along oriented cycles"

Problem 1 The theory is trivial for quivers without oriented cycles

Problem 2 In general, we loose a lot, e.g. the Jordan normal form for (1)

- ▶ Issue The GIT approach only sees closed orbits = semisimple things
- Left Getting rid of the origin would "solve" that issue
- ► Right Getting rid of the origin and one axis would "solve" that issue

- ▶ Issue The GIT approach only sees closed orbits = semisimple things
- Left Getting rid of the origin would "solve" that issue
- ► Right Getting rid of the origin and one axis would "solve" that issue

- Choose a character $\chi \colon \mathcal{G}_{d} \to \mathbb{C}^{*}$, e.g. the determinant
- ► <u> χ -semiinvariants</u> $\mathbb{C}[R_d]_{\chi}^{G_d} = \{f \mid f(g \subset v) = \chi(g)^N f(v) \text{ for some weight } N\};$ graded by weight
- χ -semistable $R_d^{sst} = \{v \mid f(v) \neq 0 \text{ for some } f \text{ of weight } > 0\}$
- Quotient $\pi: R_d^{sst} \to Proj(\mathbb{C}[R_d]_{\chi}^{G_d}) = R_d^{sst}//G_d$
- ▶ Theorem (Mumford ~1965) $M^{sst} = R_d^{sst} / / G_d$ parametrizes the closed orbits in R_d^{sst}
- ▶ Recall that $Proj(S) = \{P \subset S \text{ homogeneous and prime with } S_+ \not\subset P\}$

• Character
$$\chi = det$$
 (equals id since 1d case)

•
$$\chi$$
-semistable points $R_{(1,1)}^{sst} \cong \mathbb{C}^2 \setminus \{(0,0)\}$

Invariants and moduli $\mathbb{C}[R_{(1,1)}^{sst}]_{\chi}^{\mathcal{G}_d} \cong \mathbb{C}[X_{deg1}, Y_{deg1}]$ and $Proj(\mathbb{C}[X, Y]) = \mathbb{P}^1$

• Character
$$\chi = det$$
 (equals id since 1d case)

•
$$\chi$$
-semistable points $R_d^{sst} \cong \mathbb{C}^2 \setminus y$ -axis

Invariants and moduli $\mathbb{C}[R_d^{sst}]_{\chi}^{G_d} \cong \mathbb{C}[XY_{deg0}, X_{deg1}]$ and $Proj(\mathbb{C}[XY, X]) = \mathbb{A}^1$

► Choose $\Theta \in (\mathbb{Z}$ vertices)*, and define the slope $= \Theta(\boldsymbol{d}(V)) / \dim V \in \mathbb{Q}$

► Define

Θ -semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ -stable	same but with $<$
Θ-polystable	direct sum of Θ -stable of the same slope

► Choose $\Theta \in (\mathbb{Z}$ vertices)*, and define the slope $= \Theta(\boldsymbol{d}(V)) / \dim V \in \mathbb{Q}$

Define

Θ -semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable	same but with $<$
Θ -polystable	direct sum of Θ -stable of the same slope

- ► Choose $\Theta \in (\mathbb{Z}$ vertices)*, and define the slope $= \Theta(\boldsymbol{d}(V)) / \dim V \in \mathbb{Q}$
- Define

Θ -semistable	The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable	same but with $<$
⊖-polystable	direct sum of Θ -stable of the same slope

► For every
$$\Theta \neq 0$$
 and every Q -rep M there $\exists!$ filtration

$$0 = M_0 \subset M_1 \subset ... \subset M_k = M$$

such that:

- M_i/M_{i-1} is Θ -stable
- The slope of the M_i/M_{i-1} is strictly decreasing
- ▶ For $\Theta = 0$ the above "specializes" to the Jordan–Hölder theorem
- ▶ We can thus (at least in some sense) describe all *Q*-reps

There is still much to do...

Thanks for your attention!