


Matrix problems – the algebraic approach

▶ Recall Some matrix problems can be associated with quivers

▶ Recall Matrix problems are doable only in the finite and affine ADE types

▶ Otherwise, the algebraic approach is doomed to fail and classifications get wild

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:

Matrices and moduli Or: Almost all = boring? August 2023 2 / 5



Matrix problems – the algebraic approach

▶ Recall Some matrix problems can be associated with quivers

▶ Recall Matrix problems are doable only in the finite and affine ADE types

▶ Otherwise, the algebraic approach is doomed to fail and classifications get wild

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:

Matrices and moduli Or: Almost all = boring? August 2023 2 / 5



Matrix problems – the algebraic approach

,

d (M) = (1, 1, 2, 1)

d (M ′) = (0, 0, 1, 0)

d (M ′′) = (1, 1, 1, 1)

▶ The classification of inde. is hopeless in general

▶ But for almost all inde. the classification is actually pretty easy

▶ We will see this momentarily dimension vector d wise
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Matrix problems – the algebraic approach

▶ Checking whether a graph is Hamiltonian is NP complete = difficult as hell

▶ But for almost all graphs there are efficient algorithm to check this

▶ So the difficulty is very concentrated
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Matrix problems – the algebraic approach

Triple Kronecker : K 3 = 1 2

Kronecker’s normal form for

(A,B) ≈ (A′,B ′)
:

▶ Take d = (n, n) for K 3

▶ Assume that A is invertible, B is diagonalizable with pairwise different
eigenvalues

▶ Using Kronecker’s normal form we can assume that

A = idn and B = diag(λ1, ..., λn)
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Triple Kronecker : K 3 = 1 2

Kronecker’s normal form for

(A,B) ≈ (A′,B ′)
:

▶ The subgroup H ⊂ GLn × GLn fixing (A,B) consists of diagonal matrices
diag(h1, ..., hn) acting on C by conjugation: ci,j 7→ hi/hj · ci,j

▶ Thus, we can assume that

C =

( c1,1 c1,2 ... c1,n−1 c1,n
1 c2,2 ... c2,n−1 c2,n

c3,1 1 ... c3,n−1 c3,n
...

cn,1 cn,2 ... 1 c1,n

)
, ci,j ̸= 0
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and we go back to quivers afterwards
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)
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Example (type D4)
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Moduli spaces – semisimple case

▶ Basic idea Fix d , and M of dimension d , and consider the affine C-space

Rd = Rd (Q) =
⊕

i→j homC(Mi ,Mj)

Gd =
∏

i GL(Mi ) acts on Rd via base change, and Gd -orbits correspond

bijectively to the iso. classes of Q-reps of dimension d

▶ Task Find a subset U ⊂ Rd , an algebraic variety X and a morphism

π : U → X whose fibers are precisely the Gd -orbits in U

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Moduli spaces – semisimple case

Rd Y

X

π

f

∃!f

▶ Gd acts on Rd as before, (X , π) should be universal
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Moduli spaces – semisimple case

Rd Y

X

π
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∃!f

▶ Theorem (Le Bruyn–Procesi ∼1990) Rd//G = Spec(C[Rd ]
Gd ) and
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▶ Call Mss
d = Rd//G the moduli space of semisimple Q-reps of dimension d

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!
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then we can assume that we have the matrix ( λ t
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For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results

Matrices and moduli Or: Almost all = boring? August 2023 π / 5



Moduli spaces – semisimple case

Rd Y

X

π

f

∃!f

▶ Theorem (Le Bruyn–Procesi ∼1990) Rd//G = Spec(C[Rd ]
Gd ) and

parametrizes iso. classes of semisimple Q-reps of dimension d

▶ Closed orbit ⇔ semisimple

▶ Call Mss
d = Rd//G the moduli space of semisimple Q-reps of dimension d

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results

Matrices and moduli Or: Almost all = boring? August 2023 π / 5



Moduli spaces – semisimple case

Rd Y

X

π

f

∃!f

▶ Theorem (Le Bruyn–Procesi ∼1990) Rd//G = Spec(C[Rd ]
Gd ) and

parametrizes iso. classes of semisimple Q-reps of dimension d

▶ Closed orbit ⇔ semisimple

▶ Call Mss
d = Rd//G the moduli space of semisimple Q-reps of dimension d

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!
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We only need to be able to calculate the eigenvalues
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Example ( 1 )
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is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)
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For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)
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▶ Call Mss
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Problem
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Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!
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If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!
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For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Moduli spaces – semisimple case

▶ Theorem (Le Bruyn–Procesi ∼1990) C[Rd ]
Gd is generated by “traces along

oriented cycles”

▶ Problem 1 The theory is trivial for quivers without oriented cycles

▶ Problem 2 In general, we loose a lot, e.g. the Jordan normal form for 1

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall
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⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
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We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators
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is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)
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is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)
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Lemma tr( ) and det( ) are algebraically independent
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For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
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We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators
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The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Moduli spaces – semisimple case

▶ Theorem (Le Bruyn–Procesi ∼1990) C[Rd ]
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Moduli spaces – beyond semisimple

▶ Issue The GIT approach only sees closed orbits = semisimple things

▶ Left Getting rid of the origin would “solve” that issue

▶ Right Getting rid of the origin and one axis would “solve” that issue

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult

Matrices and moduli Or: Almost all = boring? August 2023 4 / 5
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Moduli spaces – beyond semisimple

▶ Choose a character χ : Gd → C∗, e.g. the determinant

▶ χ-semiinvariants C[Rd ]
Gd
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graded by weight
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d
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Moduli spaces – beyond semisimple

▶ Character χ = det (equals id since 1d case)
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Moduli spaces – beyond semisimple

▶ Choose Θ ∈ (Zvertices)∗, and define the slope = Θ
(
d (V )

)
/ dimV ∈ Q

▶ Define

Θ-semistable The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable same but with <

Θ-polystable direct sum of Θ-stable of the same slope
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Θ-stable same but with <

Θ-polystable direct sum of Θ-stable of the same slope

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult
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Matrix problems – the algebraic approach

▶ Recall Some matrix problems can be associated with quivers

▶ Recall Matrix problems are doable only in the finite and affine ADE types

▶ Otherwise, the algebraic approach is doomed to fail and classifications get wild

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:
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Matrix problems – the algebraic approach

,

d (M) = (1, 1, 2, 1)

d (M ′) = (0, 0, 1, 0)

d (M ′′) = (1, 1, 1, 1)

▶ The classification of inde. is hopeless in general

▶ But for almost all inde. the classification is actually pretty easy

▶ We will see this momentarily dimension vector d wise
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Matrix problems – the algebraic approach

▶ Checking whether a graph is Hamiltonian is NP complete = difficult as hell

▶ But for almost all graphs there are efficient algorithm to check this

▶ So the difficulty is very concentrated
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Matrix problems – the algebraic approach

Triple Kronecker : K 3 = 1 2

Kronecker’s normal form for

(A,B) ≈ (A′,B ′)
:

▶ Take d = (n, n) for K 3

▶ Assume that A is invertible, B is diagonalizable with pairwise different
eigenvalues

▶ Using Kronecker’s normal form we can assume that

A = idn and B = diag(λ1, ..., λn)
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Matrix problems – the algebraic approach

Triple Kronecker : K 3 = 1 2

Kronecker’s normal form for

(A,B) ≈ (A′,B ′)
:

▶ The subgroup H ⊂ GLn × GLn fixing (A,B) consists of diagonal matrices
diag(h1, ..., hn) acting on C by conjugation: ci,j 7→ hi/hj · ci,j

▶ Thus, we can assume that

C =

( c1,1 c1,2 ... c1,n−1 c1,n
1 c2,2 ... c2,n−1 c2,n

c3,1 1 ... c3,n−1 c3,n
...

cn,1 cn,2 ... 1 c1,n

)
, ci,j ̸= 0

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:

Matrices and moduli Or: Almost all = boring? August 2023 2 / 5

Moduli spaces – semisimple case

Rd Y

X

π

f

∃!f

▶ Theorem (Le Bruyn–Procesi ∼1990) Rd//G = Spec(C[Rd ]
Gd ) and

parametrizes iso. classes of semisimple Q-reps of dimension d

▶ Closed orbit ⇔ semisimple

▶ Call Mss
d = Rd//G the moduli space of semisimple Q-reps of dimension d

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Moduli spaces – beyond semisimple

▶ Choose a character χ : Gd → C∗, e.g. the determinant

▶ χ-semiinvariants C[Rd ]
Gd
χ = {f | f (g v) = χ(g)N f (v) for some weight N};

graded by weight

▶ χ-semistable Rsst
d = {v | f (v) ̸= 0 for some f of weight > 0}

▶ Quotient π : Rsst
d → Proj(C[Rd ]

Gd
χ ) = Rsst

d //Gd

▶ Theorem (Mumford ∼1965) Msst = Rsst
d //Gd parametrizes the closed orbits in Rsst

d

▶ Recall that Proj(S) = {P ⊂ S homogeneous and prime with S+ ̸⊂ P}

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult
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Moduli spaces – beyond semisimple

▶ For every Θ ̸= 0 and every Q-rep M there ∃! filtration

0 = M0 ⊂ M1 ⊂ ... ⊂ Mk = M

such that:

• Mi/Mi−1 is Θ-stable

• The slope of the Mi/Mi−1 is strictly decreasing
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There is still much to do...

Thanks for your attention!
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Matrix problems – the algebraic approach

▶ Recall Some matrix problems can be associated with quivers

▶ Recall Matrix problems are doable only in the finite and affine ADE types

▶ Otherwise, the algebraic approach is doomed to fail and classifications get wild

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:
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Matrix problems – the algebraic approach

▶ Checking whether a graph is Hamiltonian is NP complete = difficult as hell

▶ But for almost all graphs there are efficient algorithm to check this

▶ So the difficulty is very concentrated
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Matrix problems – the algebraic approach

Triple Kronecker : K 3 = 1 2

Kronecker’s normal form for

(A,B) ≈ (A′,B ′)
:

▶ Take d = (n, n) for K 3

▶ Assume that A is invertible, B is diagonalizable with pairwise different
eigenvalues

▶ Using Kronecker’s normal form we can assume that

A = idn and B = diag(λ1, ..., λn)

Today

A geometric approach to matrix problems
following Reinecke’s Felix Klein lecture 2020 (ask Dr. google for 5 brilliant video lectures)

But first let me wrap-up the algebraic approach

General phenomena

“Really difficult”

often means

“easy almost all of the time, but hard for some cases”

I will show you now a fun example of this phenomena!

The example is not related to quivers
but this is how I learned this stuff ;-)
and we go back to quivers afterwards

Almost all graphs are Hamiltonian:

Almost all matrices have n different eigenvalues:

Theorem (folklore ∼1970s)

Almost all inde. K 3-reps with dimension (vector) (n, n)
are of the form

(
idn, diag(λ1..., λn),C

)
as in the background

A bit more effort shows something similar for other dimensions vectors and quivers

The bait It is often very easy to classify almost all indecomposables

This is the ignore the black sheep strategy

are very successful in all of math and even life

The catch This “generic” classification kills a lot

Example
For the Jordan quiver 1 a generic classification reduces to

diagonalizable matrices completely missing the Jordan normal form

The algebraic approach get us to the empty space of the atom

The geometric approach should get us a bit closer to the interesting bits

For completeness (I will not recall what root systems are)

Theorem (Kac∼1980)
For an arbitrary quiver we only have two cases:

(a) If d is a positive real root, then !∃ inde. rep. with dimension d

(b) If d is a positive imaginary root, then ∃ inde. rep. with dimension d
parametrized by 1− 1/2(d , d ) parameters

Example (type D4)
SageMath with Phi = RootSystem([’D’,4]).root poset(); produces:
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(a) If d is a positive real root, then !∃ inde. rep. with dimension d
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Moduli spaces – semisimple case

Rd Y

X

π

f

∃!f

▶ Theorem (Le Bruyn–Procesi ∼1990) Rd//G = Spec(C[Rd ]
Gd ) and

parametrizes iso. classes of semisimple Q-reps of dimension d

▶ Closed orbit ⇔ semisimple

▶ Call Mss
d = Rd//G the moduli space of semisimple Q-reps of dimension d

Problem

Take the 5-Kronecker quiver 1 2 and M(λ, µ) for (λ, µ) ̸= (0, 0) and d = (2, 3):

Lemma (easy) M(λ, µ) ∼= M(α, β) if and only if ∃t ∈ C∗ such that λ = tα and µ = t−1β

Let U be the set of all M(λ, µ)

Then limλ→0 M(λ, 1) = M(0, 1) and limµ→0 M(1, µ) = M(1, 0) in U

Hence, there can not be a continuous map π : U → X since

M(λ, 1) ∼= M(1, µ) but M(0, 1) ̸∼= M(1, 0)

The above example is just one of the typical problems in defining quotients:
it shows that the potential “orbit space U/Gd” would be non-separated

Usually set-theoretical quotients have a bad topology – need something better!

“Proof” of Closed orbit ⇔ semisimple

If a Q-rep of dimension 2 of 1 is not semisimple

then we can assume that we have the matrix ( λ t
0 λ )

For t ̸= 0 this is a nontrivial Jordan block up to base change
For t = 0 this is a direct sum of two 1d simples

Thus, the orbit of the nontrivial Jordan block is not closed and looks like

Example (left: 1 2 , right: 1 2 )

For d = (1, 1), the action of Gd ∼= C∗ is t(x , y) = (tx , ty) and t(x , y) = (tx , t−1y)
The orbit spaces are as above

The closed orbits are (0, 0); plus hyperbolas on the right

We miss a lot!

Recall

For acyclic quivers simple reps↭ vertices
⇒ there is one semisimple rep per d

and the example in the background is typical

We really miss a lot!

Example (Jordan quiver 1 )

d = (2), Gd = GL2(C) acting on Rd = Mat2(C) by conjugation
There are “obvious” GL2(C)-invariant functions:
the trace tr( ) and the determinant det( )

Lemma C[Mat2(C)]GL2(C) is generated by tr( ) and det( )

Lemma tr( ) and det( ) are algebraically independent

Hence, C[Mat2(C)]GL2(C) ∼= C[X ,Y ] and Mat2(C)//GL2(C) is affine 2-space

Example (Jordan quiver 1 - second)

For d = (n) we have that C[Matn(C)]GLn(C) = C[ei ( )|i = 1, ..., n]
The ei ( ) are the coefficients of the characteristic polynomial

Alternatively, a diagonalizable matrix mod base change is determined by its eigenvalues!

We definitely need some replacement for this!
Example (Jordan quiver 1 - third)

We only need to be able to calculate the eigenvalues
so we could also take tr(A), tr(A2) etc. as ring generators

Example ( 1 )

For d = (2) one can show that C[Matn(C)×Matn(C)]GLn(C)
is generated by tr(A) tr(A2), tr(AB) = tr(BA), tr(B) and tr(B2)

Moreover, Rd//Gd is affine 5-space

Example ( 1 2
s

t
with s and t arrows)

For d = (1, 1) one can show that the invariant ring
is generated by tr(si tj) = si tj

Moreover, Rd//Gd ∼= Cone(Ps−1 × Pt−1 ↪→ Ps+t−1) (via Segre embedding)

Example (Segre embedding for s = t = 2)

P1 × P1 → P3 with ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1] gives

Beyond these cases this gets very difficult

Note that this geometric approach is a bit better than the algebraic “generic” results
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Moduli spaces – beyond semisimple

▶ Choose a character χ : Gd → C∗, e.g. the determinant

▶ χ-semiinvariants C[Rd ]
Gd
χ = {f | f (g v) = χ(g)N f (v) for some weight N};

graded by weight

▶ χ-semistable Rsst
d = {v | f (v) ̸= 0 for some f of weight > 0}

▶ Quotient π : Rsst
d → Proj(C[Rd ]

Gd
χ ) = Rsst

d //Gd

▶ Theorem (Mumford ∼1965) Msst = Rsst
d //Gd parametrizes the closed orbits in Rsst

d

▶ Recall that Proj(S) = {P ⊂ S homogeneous and prime with S+ ̸⊂ P}

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult
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Moduli spaces – beyond semisimple

▶ Choose Θ ∈ (Zvertices)∗, and define the slope = Θ
(
d (V )

)
/ dimV ∈ Q

▶ Define

Θ-semistable The slope is weakly decreasing on nontrivial(!) subreps
Θ-stable same but with <

Θ-polystable direct sum of Θ-stable of the same slope

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult
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Moduli spaces – beyond semisimple

▶ For every Θ ̸= 0 and every Q-rep M there ∃! filtration

0 = M0 ⊂ M1 ⊂ ... ⊂ Mk = M

such that:

• Mi/Mi−1 is Θ-stable

• The slope of the Mi/Mi−1 is strictly decreasing

▶ For Θ = 0 the above “specializes” to the Jordan–Hölder theorem

▶ We can thus (at least in some sense) describe all Q-reps

There will/must be a choice (!) involved

cf. the right example

Theorem (King, Schofield–van den Bergh ∼1994)
R sst

d (for χΘ obtained from Θ) = Θ-semistable reps; and

Msst = R sst
d //Gd

1:1←→ Θ-polystable reps of dimension d

Example
Take Θ = 0 so that χ(g) = 1, then the slope is always zero

Θ-semistable = all Q-reps
Θ-stable = simple Q-reps

Θ-polystable = semisimple Q-reps

We thus recover the setting from before

Example ( 1 2 with m ≥ 2 edges)

Take Θ(d1, d2) = d1, and d = (1, d ≤ m)

Θ-semistable = all Q-reps
Msst = Grassmannian G(d ,m)

To see this is nontrivial, but here is a sketch!
A Q-rep of dimension (1, d) is a collection of m column vectors of size d

The determinants of the
(
m
d

)
− 1 minors generate the invariants

These satisfy the Plücker relations

In general computations are difficult
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There is still much to do...

Thanks for your attention!
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