Asymptotics and tensor products

Or: I love matrices

AcceptChange what you cannot changeaccept

I report on work of Kevin Coulembier, Pavel Etingof and Victor Ostrik, and Abel Lacabanne and Pedro Vaz

Let us not count!

- $\Gamma=$ something that has a tensor product (more details later)
- $\mathbb{K}=$ any ground field, $V=$ any fin dim 「-rep
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim}_{\mathbb{K}} V^{\otimes n}=\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$

Let us not count!

Examples of what 「 could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, $G L_{N}\left(\mathbb{F}_{p^{k}}\right), \ldots$
Actually any group, monoid, semigroup
$G L_{N}(\mathbb{C}), G L_{N}(\mathbb{R}), G L_{N}\left(\overline{\mathbb{F}_{p^{k}}}\right)$, symplectic, orthogonal, braid groups, Thompson groups, \ldots

> | Super versions |
| :---: |
| $G L_{M \mid N}, O S P_{M \mid 2 N}$, periplectic, queer, \ldots |

- $\Gamma=$ something that has a tensor product (more details later)
- $\mathbb{K}=$ any ground field, $V=$ any fin dim 「-rep
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim}_{\mathbb{K}} V^{\otimes n}=\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$

Examples of what 「 could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, $G L_{N}\left(\mathbb{F}_{p^{k}}\right), \ldots$
Actually any group, monoid, semigroup
$G L_{N}(\mathbb{C}), G L_{N}(\mathbb{R}), G L_{N}\left(\overline{\mathbb{F}_{p^{k}}}\right)$, symplectic, orthogonal, braid groups, Thompson groups, \ldots
Super versions
$G L_{M \mid N}, \operatorname{OSP}_{M \mid 2 N}$, periplectic, queer, \ldots

Examples (that we will touch later)
Up to some slight change of setting we could also include:
Fusion categories or even finite additive Krull-Schmidt monoidal categories $\operatorname{Proj}(G, \mathbb{K}), \operatorname{Inj}(G, \mathbb{K})$, semisimpl. of quantum group reps, Soergel bimodules of finite type, \ldots

General additive Krull-Schmidt monoidal categories up to one condition (given later)
$\operatorname{Rep}\left(G L_{n}\right)$ and friends, quantum group reps, Soergel bimodules of affine type, ...
Most importantly, your favorite example might be included on this list

Let us not count!

Let us not count!

- Counting primes is difficult but...
- Prime number theorem (many people ~ 1793) \#primes $=\pi(n) \sim n / \ln n$

Let uq~ means asymptotically $=$ ratios are good (not the absolute difference!)

So this is not doing the count!

- Prime number theorem (many peopie ~17ys) \#primes $=\pi(n) \sim h / \ln n$

Seriously, counting is difficult!

Legendre ~1808:
(for $n /(\ln n-1.08366)$)

Limite \boldsymbol{x}	Nombre r		Limite \boldsymbol{x}	Nombre r	
	par la formule.	par les Tables.		par Ia formule.	par les Tables.
10080	1230	1230	100000	9588	9592
20000	2268	2263	150000	13844	13849
30000	3252	3246	200000	${ }^{17982}$	${ }^{17984}$
40000	4205	4204	250000	22035	22045
50000	5136	5134	300000	26023	25998
60000	6049	6058	550000	29965	29977
70000	6949	6936	400000	33854	3386ı
80000	7838	$7_{7}^{83} 7$	Acctua	ally, \#prim	es<1000
90000	8717	8713		$=1229$.	

Gauss, Legendre and company counted primes up to $n=400000$ and more
That took years (your IPhone can do that in seconds...humans have advanced!)

Let us not count!

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$, then

$$
\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $2=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 1.99265$

Let us not count!

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $3=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 2.9875$

Observation 1
Whatever is true for $S L_{2}$ over \mathbb{C} is true in general, right? So let us come back to the general setting: $\Gamma=$ affine semigroup superscheme $\mathbb{K}=$ any field, $V=$ any fin dim $\Gamma-$ rep $b_{n}=b_{n}^{\ulcorner, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
1.5

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}} \text { seems to converge to } 3=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 2.9875
$$

\(\left.$$
\begin{array}{c}\text { Observation 1 } \\
\begin{array}{c}\text { Whatever is true for } S L_{2} \text { over } \mathbb{C} \text { is true in general, right? } \\
\text { So let us come back to the general setting: } \\
\Gamma=\text { affine semigroup superscheme } \\
\mathbb{K}=\text { any field, } V=\text { any fin dim } \Gamma \text {-rep }\end{array}
$$

b_{n}=b_{n}^{\Gamma, V}=number of indecomposable summands of V^{\otimes n} (with multiplicities)\end{array}\right]\)| Observation 2 |
| :---: |
| $b_{n} b_{m} \leq b_{n+m} \Rightarrow$ |
| $\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ |
| is well-defined by a version of Fekete's Subadditive Lemma |

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}} \text { seems to converge to } 3=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 2.9875
$$

Observation 1
Whatever is true for $S L_{2}$ over \mathbb{C} is true in general, right?

So let us come back to the general setting:
$\Gamma=$ affine semigroup superscheme
$\mathbb{K}=$ any field, $V=$ any fin dim Γ-rep

$b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
Observation 3
$1 \leq \beta \leq \operatorname{dim}_{\mathbb{K}} V$
$\beta=1 \Leftrightarrow V^{\otimes n}$ for $n \gg 0$ is 'one block'
$\beta=\operatorname{dim}_{\mathbb{K}} V \Leftrightarrow$ summands of $V^{\otimes n}$ for $n \gg 0$ are 'essentially one-dimensional'
$1 \leq \beta \leq \operatorname{dim}_{\mathbb{K}} V$

Let us not count!

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

In other words, compared to the size of the exponential growth of $\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$ all indecomposable summands are 'essentially one-dimensional'

Sun

$(\operatorname{dim} \mathbf{V})^{n}$

Let us not count!

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The fir
On the next slide there is a formula for

We will explore the formula by examples so no need to memorize it

The take away messages are:
The formula is completely explicit
It only depends on eigenvalues and eigenvectors associated to a matrix
The assumptions on the next slide are not necessary but make the formula look nicer

The finite case

- Take a finite based $\mathbb{R}_{\geq 0}$-algebra R with basis $C=\left\{c_{0}, \ldots, c_{r-1}\right\}$
- Assume that R is the Grothendieck ring of our starting category
- For $a_{i} \in \mathbb{R}_{\geq 0}$, the action matrix M of $c=a_{0} \cdot c_{0}+\ldots+a_{r-1} \cdot c_{r-1} \in R$ is the matrix of left multiplication of c on C
- Assume that M has a leading eigenvalue λ of multiplicity one; all other eigenvalues of the same absolute value are $\exp (k 2 \pi i / h) \lambda$ for some h
- Denote the right and left eigenvectors of M for λ and $\exp (k 2 \pi i / h) \lambda$ by v_{i} and w_{i}, normalized such that $w_{i}^{\top} v_{i}=1$
- Let $v_{i} w_{i}^{\top}[1]$ denote taking the sum of the first column of the matrix $v_{i} w_{i}^{\top}$
- The formula $b(n) \sim a(n)$ we are looking for is

$$
b(n) \sim\left(v_{0} w_{0}^{\top}[1] \cdot 1+v_{1} w_{1}^{\top}[1] \cdot \zeta^{n}+v_{2} w_{2}^{\top}[1] \cdot\left(\zeta^{2}\right)^{n}+\ldots+v_{h-1} w_{h-1}^{\top}[1] \cdot\left(\zeta^{h-1}\right)^{n}\right) \cdot \lambda^{n}
$$

- The convergence is geometric with ratio $\left|\lambda^{\text {sec }} / \lambda\right|$

The finite case

Symmetric group $S_{3}, \mathbb{K}=\mathbb{C}, V=$ standard rep

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Example $\lambda=2$, others $=0,-1, v=w=1 / \sqrt{6}(1,2,1), v w^{T}=\left(\begin{array}{llll}1 / 6 & 1 / 3 & 1 / 6 \\ 1 / 3 & 2 / 3 & 1 / 3 \\ 1 / 6 & 1 / 3 & 1 / 6\end{array}\right)$ and

$$
a(n)=\frac{2}{3} \cdot 2^{n}
$$

Symmetric Group S3

The finite case

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example $\lambda=2$, others $=-2,0,0,0, v_{\lambda}=w_{\lambda}=1 / \sqrt{8}(1,1,1,1,2)$
$v_{-2}=w_{-2}=1 / \sqrt{8}(-1,-1,-1,-1,2)$ and

$$
a(n)=\left(\frac{3}{4}+\frac{1}{4}(-1)^{n}\right) \cdot 2^{n}
$$

Dihedral group D4

The finite case

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example (general finite group, $\mathbb{K}=\mathbb{C}, V=$ any faithful G-rep)

In this case we have a general formula:

$$
a(n)=\left(\frac{1}{\# G} \sum_{g \in Z_{V}(G)}\left(\sum_{L \in S(G)} \omega_{L}(g) \operatorname{dim}_{\mathbb{C}} L\right) \cdot \omega_{V}(g)^{n}\right) \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n}
$$

$Z_{v}(G)=$ elements g acting by a scalar $w_{V}(g) ; S(G)=$ set of simples

Example (continued)

Symmetric group $S_{m} a(n)=\left(\sum_{k=0}^{m / 2} 1 /\left((m-2 k)!k!2^{k}\right)\right) \cdot \operatorname{dim}_{\mathbb{C}} V$
Dihedral group D_{m} of order $2 m$

$$
a(n)= \begin{cases}\frac{m+1}{2 m} \cdot 2^{n} & \text { if } m \text { is odd } \\ \frac{m+2}{2 m} \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is odd } \\ \left(\frac{(m+2)}{2 m} \cdot 1+\frac{1}{m} \cdot(-1)^{n}\right) \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is even. }\end{cases}
$$

Complex reflection group $G(d, 1, m)$

$$
\left\{\begin{array}{l}
d=1, \\
m=3
\end{array}: a(n)=\frac{2}{3} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=3
\end{array}: a(n)=\frac{5}{12} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=4
\end{array}: a(n)=\left(\frac{19}{96} \cdot 1+\frac{1}{32} \cdot(-1)^{n}\right) \cdot 4^{n}\right.\right.\right.
$$

Weyl Group of type B3

Weyl Group of type B4

The finite case

Example For the SL_{2} Verlinde category over \mathbb{C} at level k and $V=$ gen. object:
$a(n)= \begin{cases}\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is even, } \\ \left(\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot 1+\frac{[1]_{q}-[2]_{q}+\ldots-[k-1]_{q}+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot(-1)^{n}\right) \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is odd. }\end{cases}$

The finite case

Example (continued)

Here is the SL_{3} Verlinde category over \mathbb{C} at level $k=4$ and $V=$ gen. object:
$k=4: a(n)=\frac{1}{7}\left(2+2 \cos \left(\frac{3 \pi}{7}\right)\right) \cdot\left(1+2 \cos \left(\frac{2 \pi}{7}\right)\right)^{n}$,
SL3 Verlinde category for $\mathrm{k}=4$

Koornwinder polynomials make their appearance

The finite case

Example For $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), \mathbb{K}=\mathbb{F}_{p}$ and $V=\mathbb{F}_{p}^{2}$ we get:

$$
a(n)=\left(\frac{1}{2 p-2} \cdot 1+\frac{1}{2 p^{2}-2 p} \cdot(-1)^{n}\right) \cdot 2^{n}
$$

The finite case

$$
m=3: c_{1}
$$

Example For dihedral Soergel bimodules of $D_{m}, \mathbb{K}=\mathbb{C}$ and $V=B_{\text {st }}$ we get:

$$
a(n)=\frac{1}{2 m} \cdot 4^{n}
$$

The finite case

The leading
eigenvalue of 100
50-by-50 0-1-matrices

- Almost all n-by- $n 0$-1-matrices have leading eigenvalue $\approx n / 2$
- And indeed, for most categories the leading eigenvalue is large, e.g.

The max. leading eigenvalue for S_{n} versus number of its simples

The finite case

Eigenvalues and growth rates

- One can and I will identify matrices and graphs
- Strongly connected $=$ connected in the oriented sense

Eigenvalues and growth rates

$$
\left(\begin{array}{llllllllll}
3 & 0 & 5 & 1 & 8 & 7 & 0 & 1 & 4 & 7 \\
4 & 8 & 0 & 6 & 3 & 4 & 2 & 6 & 8 & 3 \\
8 & 6 & 6 & 7 & 6 & 0 & 9 & 4 & 8 & 5 \\
3 & 7 & 7 & 1 & 5 & 6 & 4 & 1 & 7 & 4 \\
4 & 0 & 3 & 4 & 4 & 8 & 8 & 1 & 4 & 2 \\
0 & 3 & 7 & 3 & 2 & 4 & 2 & 2 & 3 & 8 \\
6 & 3 & 6 & 1 & 5 & 6 & 1 & 6 & 4 & 4 \\
2 & 4 & 0 & 2 & 8 & 8 & 1 & 4 & 8 & 6 \\
6 & 7 & 6 & 3 & 4 & 2 & 9 & 6 & 5 & 0 \\
0 & 6 & 9 & 9 & 8 & 3 & 9 & 9 & 1 & 9
\end{array}\right)
$$

What on earth is going on? Strange patterns with the eigenvalues and vectors:

Leading eigenvalue and eigenvector:
$45.4588,(0.567166,0.64265,0.897238,0.692457,0.551902,0.579575,0.635507,0.635954,0.698596,1)$

10
20
Positive leading eigenvalue?
Positive leading eigenvector?
Strange symmetry of the eigenvalues?

Non-negativity is key!
Non-negative. The pattern persist:
Leading eigenvalue and eigenvector:
42.9948

Negative. The pattern breaks:

$$
\left(\begin{array}{cccccccccc}
-4 & 0 & 1 & -2 & 0 & -5 & 8 & 6 & 8 & 3 \\
-9 & -9 & 7 & 5 & 6 & 8 & -6 & 5 & 1 & 1 \\
8 & 3 & -4 & -3 & -9 & 4 & -8 & -8 & -6 & 7 \\
0 & -4 & -4 & -4 & -4 & 5 & 3 & -4 & 5 & -7 \\
0 & 3 & -2 & 2 & 5 & 1 & -2 & 0 & 9 & 8 \\
6 & 8 & 0 & -6 & -7 & 3 & -7 & -9 & -4 & -4 \\
-8 & 8 & 5 & 6 & -1 & 3 & 0 & -3 & -3 & 0 \\
4 & 3 & -1 & -9 & 6 & -4 & 2 & -3 & -1 & 7 \\
-2 & 6 & 2 & -6 & -8 & -4 & -5 & 0 & 2 & -1 \\
-6 & -1 & -1 & 5 & -7 & 7 & 4 & 4 & 9 & 4
\end{array}\right)
$$

Eigenvalues and growth rates

Eigenvalues and growth rates

Theorem (Perron-Frobenius ~ 1907, Rothblum ~ 1981) for $M \in \operatorname{Mat}_{m}\left(\mathbb{R}_{\geq 0}\right)$

- M has a leading eigenvalue λ; all other eigenvalues with $|\mu|=\lambda$ are precisely the vertices of a h_{i}-regular polygon of radius λ
- There is one such h_{i}-polygon for i from one to the multiplicity of λ
- Take $h=\operatorname{lcd}\left(h_{i}\right)$. Then there exist (explicit) polynomials $S^{i}(n)$ such that

$$
\lim _{n \rightarrow \infty}\left|(M / \lambda)^{h n+i}-S^{i}(n)\right| \rightarrow 0 \quad \forall i \in\{0, \ldots, h-1\}
$$

and the convergence is geometric with ratio $\left|\lambda^{\text {sec }} / \lambda\right|^{h}$

Eigenvalues and growth rates

Theorem (Vere-Jones+others $\mathbf{\sim 1 9 6 7}$) for $M \in \operatorname{Mat}_{\mathbb{N}}\left(\mathbb{R}_{\geq 0}\right)$

- M has a leading eigenvalue $\lambda \in \mathbb{R}_{\geq 0} \cup\{\infty\}$
- If $\lambda<\infty$, then the polygon part is the same as before
- $\left(M^{k}\right)_{i j}$ growth \leq exponentially $\Leftrightarrow \lambda<\infty$
- If $\lambda<\infty$ then $\left(M^{k}\right)_{i j} \cong a_{n} \lambda^{n}$ with non-exponential a_{n}
- If M is positively recurrent, then the approximation formula is as before
- The eigenvectors and eigenvalues can be approximated using cut-offs of M

Eigenvalues and growth rates

The infinite case

Example $\Gamma=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{K}=\overline{\mathbb{F}_{2}}$ and $V=3 \mathrm{dim}$. indecomposable we get:

- Everything works: i.e. we have a finite $\lambda=3$ and eigenvectors
- The growth rate is

$$
a(n)=3^{n} \Rightarrow \beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The infinite case

$\begin{array}{lll}1 & 1 & 1\end{array}$

Example $\Gamma=\mathrm{SL}_{2}(\mathbb{C}), \mathbb{K}=\mathbb{C}$ and $V=\mathbb{C}^{2}$:

- We have $\lambda=2$ but the eigenvectors are messed-up
- The growth rate is

$$
a(n)=\underbrace{a_{n}}_{\text {sub. exp. }} \cdot 2^{n} \Rightarrow \beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The infinite case

Example $\Gamma=\mathrm{SL}_{3}(\mathbb{C}), \mathbb{K}=\mathbb{C}$ and $V=\mathbb{C}^{3}$:

- We have $\lambda=3$ but the eigenvectors are messed-up
- The growth rate is

$$
a(n)=\underbrace{a_{n}}_{\text {sub. exp. }} \cdot 3^{n} \Rightarrow \beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The infinite $\left\{\right.$ Example The $\mathrm{SL}_{2}(\mathbb{C})$ and $\mathrm{SL}_{3}(\mathbb{C})$ examples generalize... ...to include arbitrary (faithful) fdim reps ...to other connected reductive algebraic groups

Example $\Gamma=\mathrm{SL}_{3}(\mathbb{C}), \mathbb{K}=\mathbb{C}$ and $V=\mathbb{C}^{3}$:

- We have $\lambda=3$ but the eigenvectors are messed-up
- The growth rate is

$$
a(n)=\underbrace{a_{n}}_{\text {sub. } \exp .} \cdot 3^{n} \Rightarrow \beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The infinite \quad Example The $\mathrm{SL}_{2}(\mathbb{C})$ and $\mathrm{SL}_{3}(\mathbb{C})$ examples generalize...

...to include arbitrary (faithful) fdim reps
...to other connected reductive algebraic groups
Example A bit more work recovers the Coulembier-Etingof-Ostrik formula ~2023:

$$
\begin{gathered}
a(n)=s_{V}(n) n^{-\# \text { pos. roots } / 2} \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n} \\
\text { for an explicit } s_{V}(n)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Example }\left(\mathrm{SL}_{2}(\mathbb{C}), \mathbb{K}=\mathbb{C} \text { and } V=\mathbb{C}^{2}\right) \\
& a(n)=\sqrt{2 / \pi} n^{-1 / 2} \cdot 2^{n} \approx 0.798 n^{-1 / 2} \cdot 2^{n}
\end{aligned}
$$

The infinite case

Example $\Gamma=\mathrm{GL}_{\mathbb{N}}(\mathbb{C}), \mathbb{K}=\mathbb{C}$ and $V=\mathbb{C}^{\mathbb{N}}$:

- We have $\lambda=\infty$ and the eigenvectors are messed-up
- The growth rate is thus

The infinite case

Example $\Gamma=\mathrm{GL}_{\mathbb{N}}(\mathbb{C}), \mathbb{K}=\mathbb{C}$ and $V=\mathbb{C}^{\mathbb{N}}$:

- We have $\lambda=\infty$ and the eigenvectors are messed-up
- The growth rate is thus

- 「 - something that has a tensor product (more dotatal later)
- K - any ground field, V - any fin dim Γ-rep
- Problem Decompose $V^{* \pi}$; note that $\operatorname{dim}_{k} V^{\omega+}-\left(\operatorname{dim}_{\AA} V\right)^{a}$

Let us not count!

- $b_{0}-b_{e}^{T, V}$-number of indecomposable summands of $V^{* *}$ (with multiplicities)
- Example $\Gamma-S L_{2}, \mathrm{~K}-\mathrm{C}, \mathrm{V}-\mathrm{C}^{2}$, then
$\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n}$ for $n=0, \ldots, 10$

The finite case

```
Symmetric group Si, K-C.,V-atandaed rep
```

Example $\lambda-2$, others $-0,-1, v-w-1 / \sqrt{6}(1,2,1), w^{\top}-\binom{1 / 6 / 1 / 21 / 1 / 8}{1 / 61 / 2 / 1 / 8}$ and $a(n)-\frac{2}{2}-2^{n}$

Let us not count!

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

Eigenvalues and growth rates

$\rightarrow\left(\begin{array}{cccc}0 & 3 & \frac{8}{2} & 0 \\ 5 & 0 & \frac{4}{2} & 0 \\ 0 & 0 & \frac{2}{2} \\ 0 & 1 & \frac{1}{2} & 0\end{array}\right)$

- One can and I will identify matrices and graphs
- Strongly connected - connected in the criented sense

The infinite case
Let us not count!

1.2
1.0
0.9
$\pi(x) / \int_{2}^{x} \frac{1}{\ln t} \mathrm{~d} t$
$\pi(x) / \frac{x}{\ln x}$
$\frac{\pi(x)}{1.2}$

- Counting primes is difficalt but.
- Prime number theorem (many people ~ 1793) *primes $-\pi(n) \sim n j \ln n$

There is still much to do...

- I - something that has a tensor product (more dotata laterf)
- K - any ground field, $V=$ any tin dim T-rep
- Problem Decompose $V^{3 N}$; note that $\operatorname{dim}_{x} V^{50+}-\left(\operatorname{dim}_{N} V\right)^{a}$

- $b_{0}=b_{e}^{r, V}$-number of indecomposable summands of V^{20} (with multiplicities)
- Example $\Gamma-\mathrm{SL}_{2}, \mathrm{~K}-\mathrm{C}, \mathrm{V}-\mathrm{C}^{2}$, then
$\{1,1,2,3,6,10,20,35,70,126,252\}$, $\quad b_{n}$ for $n-0, \ldots, 10$

The finite case

```
5ymmetric group Si, K-C.V-siandxad rep
```

```
5ymmetric group Si, K-C.V-siandxad rep
```

Example $\lambda-2$, others $-0,-1, v-w-1 / \sqrt{6}(1,2,1), w^{\top}-\left(\begin{array}{l}1 / / 1 / 21 / 2 / 4 \\ 1 / 2 / \beta / 1 / 8 \\ 1 / 6 / 1 / 1 / \beta\end{array}\right)$ and $a(n)-\frac{2}{3} \cdot 2^{n}$

Let us not count!

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[{\sqrt[n]{b_{n}}}]{ }=\operatorname{dim}_{\mathbb{K}} V
$$

Eigenvalues and growth rates

$<\left(\begin{array}{llll}0 & 3 & \frac{8}{3} & 0 \\ \frac{5}{5} & 0 & \frac{4}{2} & 0 \\ 0 & 0 & \frac{a}{2} \\ 0 & 1 & \frac{a}{2} & 0\end{array}\right)$

- One can and I will identify matrices and graphas
- Strongly connected - connected in the oriented sense

The infinite case
Let us not count!

1.2	$\pi(x) / \frac{x}{\ln x}$
1.0	$\pi(x) / \int_{2}^{x} \frac{1}{\ln t} \mathrm{~d} t$
0.9	π
1.0	

$\begin{array}{llllll}10^{4} & 10^{8} & 10^{12} & 10^{16} & 10^{20} & 10^{24}\end{array}$

- Coanting primes is difficiolt but.
- Prime number theorem (many people ~ 1793) \#primes $-\pi(n) \sim n / \ln n$

Example $r-2 / 2 Z \times 2 / 2 Z, X-F_{2}$ and $V-3$ dim. indecomposable we get

- Everything works i.e. we have a finite $\lambda-3$ and eigerwectors
- The gronth rate is
$\alpha(n)-3^{n}+8-\lim _{s+\infty}+\sqrt{b_{s}}-\operatorname{dimk} V$

Thanks for your attention!

