Asymptotics and tensor products

Or: I love matrices

I report on work of Kevin Coulembier, Pavel Etingof and Victor Ostrik, and Abel Lacabanne and Pedro Vaz

© Daniel Tubbenhauer

Let us not count!

- Γ = something that has a tensor product (more details later)
- \mathbb{K} = any ground field, V = any fin dim Γ -rep

• Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$

Let us not count!

- \blacktriangleright Γ = something that has a tensor product (more details later)
- \mathbb{K} = any ground field, V = any fin dim Γ -rep

• Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$

Examples of what Γ could be Any finite group, monoid, semigroup Symmetric groups, alternating groups, cyclic groups, the monster, $GL_N(\mathbb{F}_{n^k})$, ... Actually any group, monoid, semigroup $GL_N(\mathbb{C})$, $GL_N(\mathbb{R})$, $GL_N(\overline{\mathbb{F}_{p^k}})$, symplectic, orthogonal, braid groups, Thompson groups, ... Super versions $GL_{M|N}$, $OSP_{M|2N}$, periplectic, queer, ... 100 **Examples** (that we will touch later) Up to some slight change of setting we could also include: Fusion categories or even finite additive Krull-Schmidt monoidal categories **Proj** (G, \mathbb{K}) , **Inj** (G, \mathbb{K}) , semisimpl. of quantum group reps, Soergel bimodules of finite type, ... General additive Krull-Schmidt monoidal categories up to one condition (given later) $\operatorname{Rep}(GL_n)$ and friends, quantum group reps, Soergel bimodules of affine type, ... Most importantly, your favorite example might be included on this list Asymptotics and tensor products August 2023 Or: I love matrices 2 / 6

► Counting primes is difficult but...

▶ Prime number theorem (many people ~1793) # primes = $\pi(n) \sim n/\ln n$

Seriously, counting is difficult!

Asymptotics and tensor products

Let

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n \to \infty} \sqrt[n]{b_n}$ seems to converge to $2 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty}\sqrt[n]{b_n}$ seems to converge to 3 = dim_ $\mathbb C}$ V: $\sqrt[1000]{b_{1000}}\approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

Asymptotics and tensor products

Or: I love matrices

Let us not count!

We have

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Exponential growth is scary

In other words, compared to the size of the exponential growth of $(\dim_{\mathbb{K}} V)^n$ all indecomposable summands are 'essentially one-dimensional'

summands->

Pluto

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

- ▶ Take a finite based $\mathbb{R}_{\geq 0}$ -algebra *R* with basis $C = \{c_0, ..., c_{r-1}\}$
- \blacktriangleright Assume that *R* is the Grothendieck ring of our starting category
- For a_i ∈ ℝ_{≥0}, the action matrix M of c = a₀ · c₀ + ... + a_{r-1} · c_{r-1} ∈ R is the matrix of left multiplication of c on C
- ► Assume that *M* has a leading eigenvalue *λ* of multiplicity one; all other eigenvalues of the same absolute value are exp(k2πi/h)*λ* for some *h*
- ► Denote the right and left eigenvectors of M for λ and $\exp(k2\pi i/h)\lambda$ by v_i and w_i , normalized such that $w_i^T v_i = 1$
- ▶ Let $v_i w_i^T [1]$ denote taking the sum of the first column of the matrix $v_i w_i^T$
- The formula $b(n) \sim a(n)$ we are looking for is

 $b(n) \sim \left(v_0 w_0^T [1] \cdot 1 + v_1 w_1^T [1] \cdot \zeta^n + v_2 w_2^T [1] \cdot (\zeta^2)^n + ... + v_{h-1} w_{h-1}^T [1] \cdot (\zeta^{h-1})^n \right) \cdot \lambda^n$

 \blacktriangleright The convergence is geometric with ratio $|\lambda^{sec}/\lambda|$

Asymptotics and tensor products

Or: I love matrices

August 2023 $\pi/6$

Example For the SL₂ Verlinde category over \mathbb{C} at level k and V=gen. object:

$$a(n) = \begin{cases} \frac{[1]_q + \dots + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot \left(2\cos(\pi/(k+1))\right)^n & \text{if } k \text{ is even,} \\ \left(\frac{[1]_q + \dots + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot 1 + \frac{[1]_q - [2]_q + \dots - [k-1]_q + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot (-1)^n \right) \cdot \left(2\cos(\pi/(k+1))\right)^n & \text{if } k \text{ is odd.} \end{cases}$$

Example For $SL_2(\mathbb{F}_p)$, $\mathbb{K} = \mathbb{F}_p$ and $V = \mathbb{F}_p^2$ we get:

$$a(n) = \left(\frac{1}{2p-2} \cdot 1 + \frac{1}{2p^2 - 2p} \cdot (-1)^n\right) \cdot 2^n$$

Asymptotics and tensor products

Or: I love matrices

Example For dihedral Soergel bimodules of D_m , $\mathbb{K} = \mathbb{C}$ and $V = B_{st}$ we get:

$$a(n) = \frac{1}{2m} \cdot 4^n$$

Asymptotics and tensor products

Or: I love matrices

► One can and I will identify matrices and graphs

► Strongly connected = connected in the oriented sense

Asymptotics and tensor products

Or: I love matrices

What on earth is going on? Strange patterns with the eigenvalues and vectors:

Asymptotics and tensor products

Or: I love matrices

August 2023 / 6 4

Theorem (Perron–Frobenius ~1907, Rothblum ~1981) for $M \in \operatorname{Mat}_m(\mathbb{R}_{\geq 0})$

- M has a leading eigenvalue λ; all other eigenvalues with |μ| = λ are precisely the vertices of a h_i-regular polygon of radius λ
- ▶ There is one such h_i -polygon for *i* from one to the multiplicity of λ
- ▶ Take $h = lcd(h_i)$. Then there exist (explicit) polynomials $S^i(n)$ such that

$$\lim_{n\to\infty} |(M/\lambda)^{hn+i} - S^i(n)| \to 0 \quad \forall i \in \{0, ..., h-1\}$$

and the convergence is geometric with ratio $|\lambda^{sec}/\lambda|^h$

Theorem (Vere-Jones+others \sim **1967)** for $M \in Mat_{\mathbb{N}}(\mathbb{R}_{\geq 0})$

- ▶ *M* has a leading eigenvalue $\lambda \in \mathbb{R}_{\geq 0} \cup \{\infty\}$
- ▶ If $\lambda < \infty$, then the polygon part is the same as before
- $(M^k)_{ij}$ growth \leq exponentially $\Leftrightarrow \lambda < \infty$
- ▶ If $\lambda < \infty$ then $(M^k)_{ij} \cong a_n \lambda^n$ with non-exponential a_n
- If M is positively recurrent, then the approximation formula is as before
- ► The eigenvectors and eigenvalues can be approximated using cut-offs of *M* Asymptotics and tensor products Or: 1 love matrices August 2023 4 / 6

Example $\Gamma = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{K} = \overline{\mathbb{F}_2}$ and V=3 dim. indecomposable we get:

- \blacktriangleright Everything works: i.e. we have a finite $\lambda=3$ and eigenvectors
- ► The growth rate is

$$a(n) = 3^n \Rightarrow \beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Example $\Gamma = SL_2(\mathbb{C})$, $\mathbb{K} = \mathbb{C}$ and $V = \mathbb{C}^2$:

- We have $\lambda = 2$ but the eigenvectors are messed-up
- ▶ The growth rate is

$$a(n) = \underbrace{a_n}_{\text{sub. exp.}} \cdot 2^n \Rightarrow \beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Example $\Gamma = SL_3(\mathbb{C})$, $\mathbb{K} = \mathbb{C}$ and $V = \mathbb{C}^3$:

- ▶ We have $\lambda = 3$ but the eigenvectors are messed-up
- ► The growth rate is

$$a(n) = \underbrace{a_n}_{\text{sub. exp.}} \cdot 3^n \Rightarrow \beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Example $\Gamma = SL_3(\mathbb{C})$, $\mathbb{K} = \mathbb{C}$ and $V = \mathbb{C}^3$:

- ▶ We have $\lambda = 3$ but the eigenvectors are messed-up
- ► The growth rate is

$$a(n) = \underbrace{a_n}_{\text{sub. exp.}} \cdot 3^n \Rightarrow \beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

The infinite d Example The $SL_2(\mathbb{C})$ and $SL_3(\mathbb{C})$ examples generalize...

...to include arbitrary (faithful) fdim reps

...to other connected reductive algebraic groups

Example A bit more work recovers the Coulembier-Etingof-Ostrik formula ~2023:

$$s(n) = s_V(n) n^{-\# \text{pos. roots}/2} \cdot (\dim_{\mathbb{C}} V)^n$$

for an explicit $s_V(n)$

Example $\Gamma = \operatorname{GL}_{\mathbb{N}}(\mathbb{C})$, $\mathbb{K} = \mathbb{C}$ and $V = \mathbb{C}^{\mathbb{N}}$:

- ▶ We have $\lambda = \infty$ and the eigenvectors are messed-up
- ► The growth rate is thus

superexponential

Example $\Gamma = \operatorname{GL}_{\mathbb{N}}(\mathbb{C}), \mathbb{K} = \mathbb{C} \text{ and } V = \mathbb{C}^{\mathbb{N}}$:

- \blacktriangleright We have $\lambda=\infty$ and the eigenvectors are messed-up
- ▶ The growth rate is thus

superexponential

There is still much to do ...

Thanks for your attention!