


Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

What to expect from not counting

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Examples (that we will touch later)
Up to some slight change of setting we could also include:

Fusion categories or even finite additive Krull–Schmidt monoidal categories
Proj(G ,K), Inj(G ,K), semisimpl. of quantum group reps, Soergel bimodules of finite type, ...

General additive Krull–Schmidt monoidal categories up to one condition (given later)
Rep(GLn) and friends, quantum group reps, Soergel bimodules of affine type, ...

Most importantly, your favorite example might be included on this list

Let us pause for a second...the setting is way to general!

Decomposing V⊗n for an arbitrary group is not happening

Better: Let us answer a not counting question!
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▶ Asymptotically equal does not imply that the difference is good
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Leading growth for “groups”
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2, then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

limn→∞
n
√
bn seems to converge to 2 = dimC V : 1000

√
b1000 ≈ 1.99265

Observation 1

Whatever is true for SL2 over C is true in general, right?

So let us come back to the general setting:
Γ = affine semigroup superscheme

K = any field, V = any fin dim Γ-rep
bn = bΓ,V

n =number of indecomposable summands of V⊗n (with multiplicities)

Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimK V

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimK V ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

Roughly what this shows is “ bn ∼ c(n) · (dimK V )n ” for subexponential c(n)

In other words, compared to the size of the exponential growth of (dimK V )n

all indecomposable summands are ‘essentially one-dimensional’
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Leading growth for “groups”
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Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimK V

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimK V ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

Roughly what this shows is “ bn ∼ c(n) · (dimK V )n ” for subexponential c(n)

In other words, compared to the size of the exponential growth of (dimK V )n

all indecomposable summands are ‘essentially one-dimensional’
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The recurrent case – everything goes

▶ Take a finite based R≥0-algebra R with basis C = {c0, ..., cr−1, ...}
▶ Assume that R is the Grothendieck ring of our starting category

▶ For ai ∈ R≥0, the action matrix M of c = a0 · c0 + ... + ar−1 · cr−1 ∈ R is the
matrix of left multiplication of c on C

▶ Assume that M has a leading eigenvalue λ of multiplicity one; all other
eigenvalues of the same absolute value are exp(k2πi/h)λ for some h

▶ Denote the right and left eigenvectors of M for λ and exp(k2πi/h)λ by vi and
wi , normalized such that wT

i vi = 1

▶ Let viw
T
i [1] denote taking the sum of the first column of the matrix viw

T
i

▶ The formula b(n) ∼ a(n) we are looking for is (ζ = exp(2πi/h))

b(n) ∼
(
v0w

T
0 [1] · 1 + v1w

T
1 [1] · ζn + v2w

T
2 [1] · (ζ2)n + ... + vh−1w

T
h−1[1] · (ζh−1)n

)
· λn

▶ The convergence is geometric with ratio |λsec/λ|

On the next slide there is a formula of the form

bn︸︷︷︸
b(n)

∼ c(n) · (dimK V )n︸ ︷︷ ︸
a(n)

”

We will explore the formula by examples
so no need to memorize it

The take away messages are:

The formula is completely explicit and works in quite some generality specified later

It only depends on eigenvalues and eigenvectors associated to a matrix

The assumptions on the next slide are not necessary

but make the formula look nicer

Example (general finite group, K = C, V=any faithful G -rep)

In this case we have a general formula:

Zv (G)=elements g acting by a scalar wV (g); S(G)=set of simples

Example (continued)

Symmetric group Sm a(n) =
(∑m/2

k=0 1/
(
(m − 2k)!k!2k

))
· (dimC V )n

Dihedral group Dm of order 2m

Complex reflection group G(d , 1,m)

Example (continued)

The growth rate in this case is not in N
but rather the leading root of the Chebyshev polynomial:

Example (continued)

Here is the SL3 Verlinde category over C at level k = 4 and V=gen. object:

Koornwinder polynomials make their appearance

Observe that the growth of b(n) is always exponential
Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories

Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.
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The recurrent case – everything goes

Symmetric group S3, K = C, V=standard rep

Example λ = 2, others=0,−1, v = w = 1/
√
6(1, 2, 1), vwT =

(
1/6 1/3 1/6
1/3 2/3 1/3
1/6 1/3 1/6

)
and
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The recurrent case – everything goes

Dihedral group D4 of order 8, K = C, V=defining rotation rep

Example λ = 2, others=−2, 0, 0, 0, vλ = wλ = 1/
√
8(1, 1, 1, 1, 2)

v−2 = w−2 = 1/
√
8(−1,−1,−1,−1, 2) and

a(n) =
(
3
4 + 1

4 (−1)n
)
· 2n

b(n)

a(n)
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2

Dihedral group D4

b(n)
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Dihedral group D4
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It only depends on eigenvalues and eigenvectors associated to a matrix
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but make the formula look nicer
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Zv (G)=elements g acting by a scalar wV (g); S(G)=set of simples

Example (continued)

Symmetric group Sm a(n) =
(∑m/2

k=0 1/
(
(m − 2k)!k!2k

))
· (dimC V )n

Dihedral group Dm of order 2m

Complex reflection group G(d , 1,m)

Example (continued)

The growth rate in this case is not in N
but rather the leading root of the Chebyshev polynomial:

Example (continued)

Here is the SL3 Verlinde category over C at level k = 4 and V=gen. object:

Koornwinder polynomials make their appearance

Observe that the growth of b(n) is always exponential
Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories
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The recurrent case – everything goes
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The recurrent case – everything goes
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Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.

Asymptotics and tensor products Or: OMG exponential growth January 2024 4 / 5



The recurrent case – everything goes
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▶ Pólya ∼1921 Zd is recurrent/transient ⇔ d ≤ 2/d > 2

▶ A drunkard will find their way home, but a drunken bird may get lost forever

▶ Transient := We will hit every point finitely often with P(robability)=1

On the next slide there is a formula of the form

bn︸︷︷︸
b(n)

∼ c(n) · (dimK V )n︸ ︷︷ ︸
a(n)

”

We will explore the formula by examples
so no need to memorize it

The take away messages are:

The formula is completely explicit and works in quite some generality specified later

It only depends on eigenvalues and eigenvectors associated to a matrix

The assumptions on the next slide are not necessary

but make the formula look nicer

Example (general finite group, K = C, V=any faithful G -rep)

In this case we have a general formula:

Zv (G)=elements g acting by a scalar wV (g); S(G)=set of simples

Example (continued)

Symmetric group Sm a(n) =
(∑m/2

k=0 1/
(
(m − 2k)!k!2k

))
· (dimC V )n

Dihedral group Dm of order 2m

Complex reflection group G(d , 1,m)

Example (continued)

The growth rate in this case is not in N
but rather the leading root of the Chebyshev polynomial:

Example (continued)

Here is the SL3 Verlinde category over C at level k = 4 and V=gen. object:

Koornwinder polynomials make their appearance

Observe that the growth of b(n) is always exponential
Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories

Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.
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The recurrent case – everything goes

▶ Pólya ∼1921 bn(V ) for V a faithful Γ-rep in char zero is recurrent ⇔ Γ is

virtually Zd for d ∈ {0, 1, 2}
▶ Virtually means we allow extensions by finite groups

On the next slide there is a formula of the form

bn︸︷︷︸
b(n)

∼ c(n) · (dimK V )n︸ ︷︷ ︸
a(n)

”

We will explore the formula by examples
so no need to memorize it

The take away messages are:

The formula is completely explicit and works in quite some generality specified later

It only depends on eigenvalues and eigenvectors associated to a matrix

The assumptions on the next slide are not necessary

but make the formula look nicer
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Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

What to expect from not counting

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Examples (that we will touch later)
Up to some slight change of setting we could also include:

Fusion categories or even finite additive Krull–Schmidt monoidal categories
Proj(G ,K), Inj(G ,K), semisimpl. of quantum group reps, Soergel bimodules of finite type, ...

General additive Krull–Schmidt monoidal categories up to one condition (given later)
Rep(GLn) and friends, quantum group reps, Soergel bimodules of affine type, ...

Most importantly, your favorite example might be included on this list

Let us pause for a second...the setting is way to general!

Decomposing V⊗n for an arbitrary group is not happening

Better: Let us answer a not counting question!

g
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Let us not count!

▶ Asymptotically equal f ∼ g if limn→∞ f (n)/g(n) → 1

▶ Logarithmic integral Li(x) =
∫ x

2
1/ ln(t)dt
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Let us not count!

▶ Asymptotically equal does not imply that the difference is good

▶ |f (n)− g(n)| is a measurement of how good the approximation is
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Leading growth for “groups”

Coulembier–Ostrik ∼2023 We have

β = limn→∞
n
√
bn = dimK V

Observation 1

Whatever is true for SL2 over C is true in general, right?

So let us come back to the general setting:
Γ = affine semigroup superscheme

K = any field, V = any fin dim Γ-rep
bn = bΓ,V

n =number of indecomposable summands of V⊗n (with multiplicities)

Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimK V

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimK V ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

Roughly what this shows is “ bn ∼ c(n) · (dimK V )n ” for subexponential c(n)

In other words, compared to the size of the exponential growth of (dimK V )n

all indecomposable summands are ‘essentially one-dimensional’
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The recurrent case – everything goes

Symmetric group S3, K = C, V=standard rep

Example λ = 2, others=0,−1, v = w = 1/
√
6(1, 2, 1), vwT =

(
1/6 1/3 1/6
1/3 2/3 1/3
1/6 1/3 1/6

)
and

a(n) = 2
3 · 2n

b(n)

a(n)

5 10 15 20

0.8

0.9

1.0

1.1

Symmetric Group S3

On the next slide there is a formula of the form

bn︸︷︷︸
b(n)

∼ c(n) · (dimK V )n︸ ︷︷ ︸
a(n)

”

We will explore the formula by examples
so no need to memorize it

The take away messages are:

The formula is completely explicit and works in quite some generality specified later

It only depends on eigenvalues and eigenvectors associated to a matrix

The assumptions on the next slide are not necessary

but make the formula look nicer

Example (general finite group, K = C, V=any faithful G -rep)

In this case we have a general formula:

Zv (G)=elements g acting by a scalar wV (g); S(G)=set of simples

Example (continued)

Symmetric group Sm a(n) =
(∑m/2

k=0 1/
(
(m − 2k)!k!2k

))
· (dimC V )n

Dihedral group Dm of order 2m

Complex reflection group G(d , 1,m)

Example (continued)

The growth rate in this case is not in N
but rather the leading root of the Chebyshev polynomial:

Example (continued)

Here is the SL3 Verlinde category over C at level k = 4 and V=gen. object:

Koornwinder polynomials make their appearance

Observe that the growth of b(n) is always exponential
Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories

Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.
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The recurrent case – everything goes

Example For the Klein four group Z/2Z×Z/2Z, K = F2 and V = Z3=3d inde. we get:
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The recurrent case – everything goes

▶ We randomly walk on some (connected) graph = at each step choose the
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There is still much to do...

Thanks for your attention!
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Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

What to expect from not counting

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Examples (that we will touch later)
Up to some slight change of setting we could also include:

Fusion categories or even finite additive Krull–Schmidt monoidal categories
Proj(G ,K), Inj(G ,K), semisimpl. of quantum group reps, Soergel bimodules of finite type, ...

General additive Krull–Schmidt monoidal categories up to one condition (given later)
Rep(GLn) and friends, quantum group reps, Soergel bimodules of affine type, ...

Most importantly, your favorite example might be included on this list

Let us pause for a second...the setting is way to general!

Decomposing V⊗n for an arbitrary group is not happening

Better: Let us answer a not counting question!

g
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How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

What to expect from not counting

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Examples (that we will touch later)
Up to some slight change of setting we could also include:

Fusion categories or even finite additive Krull–Schmidt monoidal categories
Proj(G ,K), Inj(G ,K), semisimpl. of quantum group reps, Soergel bimodules of finite type, ...

General additive Krull–Schmidt monoidal categories up to one condition (given later)
Rep(GLn) and friends, quantum group reps, Soergel bimodules of affine type, ...

Most importantly, your favorite example might be included on this list

Let us pause for a second...the setting is way to general!

Decomposing V⊗n for an arbitrary group is not happening

Better: Let us answer a not counting question!

g
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Leading growth for “groups”

Coulembier–Ostrik ∼2023 We have

β = limn→∞
n
√
bn = dimK V

Observation 1

Whatever is true for SL2 over C is true in general, right?

So let us come back to the general setting:
Γ = affine semigroup superscheme

K = any field, V = any fin dim Γ-rep
bn = bΓ,V

n =number of indecomposable summands of V⊗n (with multiplicities)

Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimK V

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimK V ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

Roughly what this shows is “ bn ∼ c(n) · (dimK V )n ” for subexponential c(n)

In other words, compared to the size of the exponential growth of (dimK V )n

all indecomposable summands are ‘essentially one-dimensional’
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The recurrent case – everything goes

Symmetric group S3, K = C, V=standard rep

Example λ = 2, others=0,−1, v = w = 1/
√
6(1, 2, 1), vwT =

(
1/6 1/3 1/6
1/3 2/3 1/3
1/6 1/3 1/6

)
and

a(n) = 2
3 · 2n

b(n)

a(n)

5 10 15 20

0.8

0.9

1.0

1.1

Symmetric Group S3

On the next slide there is a formula of the form

bn︸︷︷︸
b(n)

∼ c(n) · (dimK V )n︸ ︷︷ ︸
a(n)

”

We will explore the formula by examples
so no need to memorize it

The take away messages are:

The formula is completely explicit and works in quite some generality specified later

It only depends on eigenvalues and eigenvectors associated to a matrix

The assumptions on the next slide are not necessary

but make the formula look nicer

Example (general finite group, K = C, V=any faithful G -rep)

In this case we have a general formula:

Zv (G)=elements g acting by a scalar wV (g); S(G)=set of simples

Example (continued)

Symmetric group Sm a(n) =
(∑m/2

k=0 1/
(
(m − 2k)!k!2k

))
· (dimC V )n

Dihedral group Dm of order 2m

Complex reflection group G(d , 1,m)

Example (continued)

The growth rate in this case is not in N
but rather the leading root of the Chebyshev polynomial:

Example (continued)

Here is the SL3 Verlinde category over C at level k = 4 and V=gen. object:

Koornwinder polynomials make their appearance

Observe that the growth of b(n) is always exponential
Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories

Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.
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The recurrent case – everything goes

Example For the Klein four group Z/2Z×Z/2Z, K = F2 and V = Z3=3d inde. we get:
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The recurrent case – everything goes

▶ We randomly walk on some (connected) graph = at each step choose the
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Pólya ∼1921

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem :

a lot of properties hold with P=0 or P=1 but 0<P<1 rarely appears

Perron ∼1907, Frobenius ∼1912, Vere-Jones ∼1967, etc.

The previous eigenvalue strategy applies to recurrent settings :

For bn(V ) take the fusion graph for V and check whether it is recurrent

Examples of recurrent growth problems

Easy If one has finitely many indecomposables

Coulembier–Etingof–Ostrik ∼2023 V is an object of a finite tensor categories
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The recurrent case – everything goes

▶ Pólya ∼1921 bn(V ) for V a faithful Γ-rep in char zero is recurrent ⇔ Γ is
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Biané ∼1993, Coulembier–Etingof–Ostrik ∼2023
showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras (sln+friends) in char zero
one can still answer the three growth questions

Exp. fac. d(E)n = (dimC E)
n, subexp. fac. n#pos. roots/2, some scalar, variance

Char p is difficult, even for SL2

The subexp. factor has transcendental power (fractals!)
the “scalar function” is highly oscillating, etc.

Asymptotics and tensor products Or: OMG exponential growth January 2024 4 / 5

There is still much to do...

Thanks for your attention!
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