Growth and tensor products

Or: OMG exponential growth

AcceptChange what you cannot ehangeaccept

I report on work of Coulembier, Etingof, Ostrik, and many more

Let us not count!

- Prime number function $\pi(n)=\#$ primes $\leq \mathrm{n}$
- Counting primes is very tricky as primes "pop up randomly"
- Question 1 What is the leading growth (of the number of primes)?
- Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term $c(n)$

Let us not count!

Seriously, counting is difficult!						
Legendre ~1808: (for $n /(\ln n-1.08366)$)	Limite \boldsymbol{x}	\qquad		Limite \boldsymbol{x}	\qquad	
	10080	1230	1230	100000	9588	9592
	20000	2268	2263	150000	13844	13849
	30000	3252	3246	200000	${ }^{1} 7982$	${ }^{1} 7984$
	40000	4205	4204	250000	22035	22045
	50000	5136	5134	300000	26023	25998
	60000	6049	6058	550000	29965 $\mathbf{3 8 8 5 4}$	29977
	70000	6949	6936	400000	33854	33861
	80000	7838	${ }_{7}^{7837}$	Acctu	ally, \#prim	es<1000
	90000	8717	8713		$=1229$.	

Gauss, Legendre and company counted primes up to $n=400000$ and more That took years (your IPhone can do that in seconds...humans have advanced!)

- Question 1 What is the leading growth (of the number of primes)?
- Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term $c(n)$

Let us not count!

- Asymptotically equal $f \sim g$ if $\lim _{n \rightarrow \infty} f(n) / g(n) \rightarrow 1$
- Logarithmic integral $\operatorname{Li}(x)=\int_{2}^{x} 1 / \ln (t) d t$
- Question 2 What is the growth (of the number of primes) asymptotically?
- Answer 2 We have $\pi(n) \sim n / \log (n) \sim \operatorname{Li}(n)$

Let us not count!

- Asymptotically equal does not imply that the difference is good
- $|f(n)-g(n)|$ is a measurement of how good the approximation is
- Question 3 What is variance from the expected value $(\operatorname{Li}(n))$?
- Conjectural answer 3 We have $|\pi(n)-L i(n)| \in O\left(n^{1 / 2} \log n\right)$ or $|\pi(n)-L i(n)| \leq \frac{1}{8 \pi} n^{1 / 2} \log n($ for $n \geq 2657)$

Let us not count!

\qquad $1 / 8 \mathrm{pi} * n^{\wedge}(1 / 2) * \log [n]$
-_ |Pi-Li|

What to expect from not counting

©is
 Leading growth

Asymptotic

"Variance"

Question s vvnat is valtance Irom Lne expectea value (LI(I))!

- Conjectural answer 3 We have $|\pi(n)-L i(n)| \in O\left(n^{1 / 2} \log n\right)$ or $|\pi(n)-L i(n)| \leq \frac{1}{8 \pi} n^{1 / 2} \log n($ for $n \geq 2657)$

Let us not count!

- $\Gamma=$ something that has a tensor product (more details later)
- $\mathbb{K}=$ any ground field, $V=$ any fin dim 「-rep
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim}_{\mathbb{K}} V^{\otimes n}=\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, $G L_{N}\left(\mathbb{F}_{p^{k}}\right), \ldots$
Actually any group, monoid, semigroup
$G L_{N}(\mathbb{C}), G L_{N}(\mathbb{R}), G L_{N}\left(\overline{\mathbb{F}_{p^{k}}}\right)$, symplectic, orthogonal, braid groups, Thompson groups, \ldots

> Super versions
> $G L_{M \mid N}, O S P_{M \mid 2 N}$, periplectic, queer, \ldots

- $\Gamma=$ something that has a tensor product (more details later)
- $\mathbb{K}=$ any ground field, $V=$ any fin $\operatorname{dim} \Gamma$-rep
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim}_{\mathbb{K}} V^{\otimes n}=\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$

Examples of what Γ could be

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, $G L_{N}\left(\mathbb{F}_{p^{k}}\right), \ldots$
Actually any group, monoid, semigroup
$G L_{N}(\mathbb{C}), G L_{N}(\mathbb{R}), G L_{N}\left(\overline{\mathbb{F}_{p^{k}}}\right)$, symplectic, orthogonal, braid groups, Thompson groups, \ldots
Super versions
$G L_{M \mid N}, O S P_{M \mid 2 N}$, periplectic, queer, \ldots
100
Examples (that we will touch later)
Up to some slight change of setting we could also include:

Fusion categories or even finite additive Krull-Schmidt monoidal categories $\operatorname{Proj}(G, \mathbb{K}), \operatorname{Inj}(G, \mathbb{K})$, semisimpl. of quantum group reps, Soergel bimodules of finite type, \ldots

General additive Krull-Schmidt monoidal categories up to one condition (given later)
$\operatorname{Rep}\left(G L_{n}\right)$ and friends, quantum group reps, Soergel bimodules of affine type, \ldots
Most importantly, your favorite example might be included on this list
\triangleright Problem Decompose $V^{\otimes \pi}$; note that $\operatorname{dım}_{\mathbb{K}} V^{\otimes \pi}=\left(\text { dım }_{\mathbb{K}} V\right)^{n}$

Let us not count!

Leading growth for "groups"

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$, then

$$
\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $2=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 1.99265$

Leading growth for "groups"

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $3=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 2.9875$

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}} \text { seems to converge to } 3=\operatorname{dim}_{\mathbb{C}} V: \sqrt[1000]{b_{1000}} \approx 2.9875
$$

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Observation 1

Whatever is true for $S L_{2}$ over \mathbb{C} is true in general, right?
So let us come back to the general setting: $\Gamma=$ affine semigroup superscheme $\mathbb{K}=$ any field, $V=$ any fin dim Γ-rep
$b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)

Observation 2
$b_{n} b_{m} \leq b_{n+m} \Rightarrow$
$\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$
\square

Observation 3

$1 \leq \beta \leq \operatorname{dim}_{\mathbb{K}} V$

$$
\beta=1 \Leftrightarrow V^{\otimes n} \text { for } n \gg 0 \text { is 'one block' }
$$

$\beta=\operatorname{dim}_{\mathbb{K}} V \Leftrightarrow$ summands of $V^{\otimes n}$ for $n \gg 0$ are 'essentially one-dimensional'

Leading growth for "groups"

Coulembier-Ostrik ~2023 We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

On the next slide there is a formula of the form

We will explore the formula by examples so no need to memorize it

The take away messages are:
The formula is completely explicit and works in quite some generality specified later
It only depends on eigenvalues and eigenvectors associated to a matrix
The assumptions on the next slide are not necessary but make the formula look nicer

The recurrent case - everything goes

- Take a finite based $\mathbb{R}_{\geq 0 \text {-algebra }} R$ with basis $C=\left\{c_{0}, \ldots, c_{r-1}, \ldots\right\}$
- Assume that R is the Grothendieck ring of our starting category
- For $a_{i} \in \mathbb{R}_{\geq 0}$, the action matrix M of $c=a_{0} \cdot c_{0}+\ldots+a_{r-1} \cdot c_{r-1} \in R$ is the matrix of left multiplication of c on C
- Assume that M has a leading eigenvalue λ of multiplicity one; all other eigenvalues of the same absolute value are $\exp (k 2 \pi i / h) \lambda$ for some h
- Denote the right and left eigenvectors of M for λ and $\exp (k 2 \pi i / h) \lambda$ by v_{i} and w_{i}, normalized such that $w_{i}^{\top} v_{i}=1$
- Let $v_{i} w_{i}^{\top}[1]$ denote taking the sum of the first column of the matrix $v_{i} w_{i}^{\top}$
- The formula $b(n) \sim a(n)$ we are looking for is $(\zeta=\exp (2 \pi i / h))$

$$
b(n) \sim\left(v_{0} w_{0}^{\top}[1] \cdot 1+v_{1} w_{1}^{\top}[1] \cdot \zeta^{n}+v_{2} w_{2}^{\top}[1] \cdot\left(\zeta^{2}\right)^{n}+\ldots+v_{h-1} w_{h-1}^{\top}[1] \cdot\left(\zeta^{h-1}\right)^{n}\right) \cdot \lambda^{n}
$$

- The convergence is geometric with ratio $\left|\lambda^{\text {sec }} / \lambda\right|$

The recurrent case - everything goes

Symmetric group $S_{3}, \mathbb{K}=\mathbb{C}, V=$ standard rep
 $$
\left(\begin{array}{lll} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right)
$$

Example $\lambda=2$, others $=0,-1, v=w=1 / \sqrt{6}(1,2,1), v w^{T}=\left(\begin{array}{lll}1 / 6 & 1 / 3 & 1 / 6 \\ 1 / 3 & 2 / 3 & 1 / 3 \\ 1 / 6 & 1 / 3 & 1 / 6\end{array}\right)$ and

$$
a(n)=\frac{2}{3} \cdot 2^{n}
$$

Symmetric Group S3

The recurrent case - everything goes

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example $\lambda=2$, others $=-2,0,0,0, v_{\lambda}=w_{\lambda}=1 / \sqrt{8}(1,1,1,1,2)$
$v_{-2}=w_{-2}=1 / \sqrt{8}(-1,-1,-1,-1,2)$ and

$$
a(n)=\left(\frac{3}{4}+\frac{1}{4}(-1)^{n}\right) \cdot 2^{n}
$$

Dihedral group D4

The recurrent case - everything goes

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example (general finite group, $\mathbb{K}=\mathbb{C}, V=$ any faithful G-rep)

In this case we have a general formula:

$$
a(n)=\left(\frac{1}{\# G} \sum_{g \in Z_{V}(G)}\left(\sum_{L \in S(G)} \omega_{L}(g) \operatorname{dim}_{\mathbb{C}} L\right) \cdot \omega_{V}(g)^{n}\right) \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n}
$$

$Z_{v}(G)=$ elements g acting by a scalar $w_{V}(g) ; S(G)=$ set of simples

Example (continued)

Symmetric group $S_{m} a(n)=\left(\sum_{k=0}^{m / 2} 1 /\left((m-2 k)!k!2^{k}\right)\right) \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n}$
Dihedral group D_{m} of order $2 m$

$$
a(n)= \begin{cases}\frac{m+1}{2 m} \cdot 2^{n} & \text { if } m \text { is odd, } \\ \frac{m+2}{2 m} \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is odd } \\ \left(\frac{(m+2)}{2 m} \cdot 1+\frac{1}{m} \cdot(-1)^{n}\right) \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is even. }\end{cases}
$$

Complex reflection group $G(d, 1, m)$

$$
\left\{\begin{array}{l}
d=1, \\
m=3
\end{array}: a(n)=\frac{2}{3} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=3
\end{array}: a(n)=\frac{5}{12} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=4
\end{array}: a(n)=\left(\frac{19}{96} \cdot 1+\frac{1}{32} \cdot(-1)^{n}\right) \cdot 4^{n}\right.\right.\right.
$$

Weyl Group ol type B3

The recurrent case - everything goes

Example For the SL_{2} Verlinde category over \mathbb{C} at level k and $V=$ gen. object:
$a(n)= \begin{cases}\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}} \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is even }, \\ \left(\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot 1+\frac{[1]_{q}-[2]_{q}+\ldots-[k-1]_{q}+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot(-1)^{n}\right) \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is odd. }\end{cases}$

The recurrent case - everything goes

Example (continued)

Here is the SL_{3} Verlinde category over \mathbb{C} at level $k=4$ and $V=$ gen. object:
$k=4: a(n)=\frac{1}{7}\left(2+2 \cos \left(\frac{3 \pi}{7}\right)\right) \cdot\left(1+2 \cos \left(\frac{2 \pi}{7}\right)\right)^{n}$,
SL3 Verlinde category for $\mathrm{k}=4$

Koornwinder polynomials make their appearance

The recurrent case - everything goes

Example For $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), \mathbb{K}=\mathbb{F}_{p}$ and $V=\mathbb{F}_{p}^{2}$ we get:

$$
a(n)=\left(\frac{1}{2 p-2} \cdot 1+\frac{1}{2 p^{2}-2 p} \cdot(-1)^{n}\right) \cdot 2^{n}
$$

The recurrent case - everything goes

Example For dihedral Soergel bimodules of $D_{m}, \mathbb{K}=\mathbb{C}$ and $V=B_{\text {st }}$ we get:

$$
a(n)=\frac{1}{2 m} \cdot 4^{n}
$$

The recurrent case - everything goes

$$
a(n)=\frac{1}{2 m} \cdot 4^{n}
$$

The recurrent case - everything goes

SL2 over F5

- The variance is given by $\left(\lambda_{\text {sec }}\right)^{n}$ (second largest EV)
- Example Above for $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right), \mathbb{K}=\mathbb{F}_{5}$ and $V=\mathbb{F}_{5}^{2}, \lambda_{\text {sec }}=$ golden ratio

The recurrent case - everything goes

VORLESUNGEN

ÜBER DAS IKOSAEDER

AUFLÖSUNG

GLEICHUNGEN VOM FONFTEN GRADE
vons
FELIX KLEIN, 18884
Offenbar umfasst unsere neue Gruppe von der Identität abgesehen nur Operationen von der Periode 2, und es ist zufällig, dass wir eine dieser Operationen an die Hauptaxe der Figur, die beiden anderen an die Nebenaxe geknüpft haben. Dementsprechend will ich die Gruppe mit einem besonderen Namen belegen, der nicht mehr an die Diederconfiguration erinnert, und sie als Vierergruppe benennen.

Example For the Klein four group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{K}=\overline{\mathbb{F}_{2}}$ and $V=Z_{3}=3$ d inde. we get:

$$
b_{n} \sim 3^{n}
$$

The recurrent case - everything goes

- We randomly walk on some (connected) graph = at each step choose the next step/edge randomly but equally likely "coin flip walk"
- Question How often do we visit a vertex?
- Recurrent $:=$ We will hit every point infinitely often with $P($ robability $)=1$
- Example Every (random walk on a) finite graph is recurrent

The recurrent case - everything goes

1-dimensional lattice

2-dimensional lattice

3-dimensional lattice

The recurrent case - everything goes

Pólya ~1921

Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz.

Von
Georg Pólya in Zürich.

- A drunkard will find their way home, but a drunken bird may get lost forever
- Transient $:=$ We will hit every point finitely often with $P($ robability $)=1$

Every graph is either recurrent or transient

This is an instance of a 0-1-theorem : a lot of properties hold with $\mathrm{P}=0$ or $\mathrm{P}=1$ but $0<\mathrm{P}<1$ rarely appears

- Pólya $\sim 1921 \mathbb{Z}^{d}$ is recurrent/transient $\Leftrightarrow d \leq 2 / d>2$
- A drunkard will find their way home, but a drunken bird may get lost forever
- Transient $:=$ We will hit every point finitely often with $P($ robability $)=1$

This is an instance of a 0-1-theorem : a lot of properties hold with $\mathrm{P}=0$ or $\mathrm{P}=1$ but $0<\mathrm{P}<1$ rarely appears
\checkmark P \quad Perron ~ 1907, Frobenius ~ 1912, Vere-Jones ~ 1967, etc.

- A The previous eigenvalue strategy applies to recurrent settings : For $b_{n}(V)$ take the fusion graph for V and check whether it is recurrent

Easy If one has finitely many indecomposables
Coulembier-Etingof-Ostrik $\sim 2023 V$ is an object of a finite tensor categories
$>P \delta \quad$ Perron ~ 1907, Frobenius ~ 1912, Vere-Jones ~ 1967, etc.

- A The previous eigenvalue strategy applies to recurrent settings : For $b_{n}(V)$ take the fusion graph for V and check whether it is recurrent

The recurrent case - everything goes

1-dimensional lattice

2-dimensional lattice

3-dimensional lattice

- Pólya $\sim 1921 b_{n}(V)$ for V a faithful Γ-rep in char zero is recurrent $\Leftrightarrow \Gamma$ is virtually \mathbb{Z}^{d} for $d \in\{0,1,2\}$
- Virtually means we allow extensions by finite groups

Biané ~1993, Coulembier-Etingof-Ostrik ~2023

showed that surprisingly (not recurrent!)

for complex fin dim simple Lie algebras ($\mathfrak{s l}_{n}+$ friends) in char zero one can still answer the three growth questions
2.2. Théorème:

$$
\left.\begin{array}{rl}
m\left(\lambda, \mathrm{E}^{\otimes n}\right) & =0 \text { si } \lambda \notin n \mathrm{P}(\mathrm{E})+\mathrm{Q}(\mathrm{E}) \\
& =\prod_{\alpha \in \mathrm{R}_{+}} q^{*}(\alpha, \rho) \\
\operatorname{vol}_{q}\left(\mathrm{~h}_{\mathbb{R}} / \mathrm{Q}^{v}\right) & \frac{k(\mathrm{E})}{\left.(2 \pi)^{1 / 2}\right)} d^{(\mathrm{E})^{n / 2}}
\end{array} d(\lambda)\left(e^{-\left(q^{*}(\lambda+\mathrm{\rho}) / 2 n\right)}+O\left(\frac{1}{n}\right)\right) \text { sinon }\right) .
$$

Le terme $O(1 / n)$ est uniforme en $\lambda \in \mathrm{P}_{++}$, et $\operatorname{vol}_{q}\left(\mathfrak{h}_{\mathbb{R}} / \mathrm{Q}^{\vee}\right)$ désigne la mesure pour dx d'un domaine fondamental du réseau Q^{\vee}.

Exp. fac. $d(E)^{n}=\left(\operatorname{dim}_{\mathbb{C}} E\right)^{n}$, subexp. fac. $n^{\# \text { pos. roots } / 2}$, some scalar, variance
Char p is difficult, even for $S L_{2}$
The subexp. factor has transcendental power (fractals!) the "scalar function" is highly oscillating, etc.

Let us not count						
Seriosaly, counting in ificuit						
$\begin{gathered} \text { Legendre } \sim 1809 \text { : } \\ \text { (for } n /(\ln n-108366) \text {) } \end{gathered}$	Linine	$\frac{\text { Soubiey } y}{\text { a }}$		Unick		
	noso	1350		,	${ }_{\text {, }}^{\text {988 }}$	\%9920
	3000	Scis	3246	300800		
	${ }_{5} 50000$	$\substack{\begin{subarray}{c}{205 \\ 5,16} }} \end{subarray}$	${ }_{6}^{404}$	${ }^{\text {Sases }}$	coss	3045 3005
	c	${ }_{6}^{60}$	${ }_{\substack{\text { cose } \\ \text { cose }}}$	\%sseme		com
	\%oses	${ }^{648}$				343:
	${ }_{\text {goseo }}$	${ }_{6}{ }^{3} 7$	${ }_{\text {a }}{ }^{2}$		$\begin{aligned} \text { tally, \#prip } \\ =1229 \\ =129 \end{aligned}$	es <1000
Gauss, Legendre and company coomted pimis up to $n=400 c 00$ and more That took years \qquad						
- Anweril There are raughly c (n) in for sutinar corraction tomm $c(0)$						

Leading growth for "groups"

Coulembier-Ostrik ~ 2023 We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[{\sqrt[~]{b}}]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The recurrent case - everything goes

- We randomby walk on some (coonocted) graph - at each step choose the next step/ddge randomly but equally likely "coin flip walk
- Question How often do we visit a vertex?
- Recurrent :- We will hit every point infinitedy often with P(robability) $)=1$
- Example Every (random walk on a) finite graph is rocurrent

n(n)-L(n) < < 1, n/2
n(n)-L(n) < < 1, n/2

The recurrent case - everything goes

The recurrent case - everything goes

Poilya $\sim 1921 b_{n}(V)$ for V a faithfuil r-rep in chaz zeral is recurrent $\#+r$ is virtually Z^{d} ford $d \in[0.12]$

- Virtually means we allow extensions by finite group

There is still much to do..

Let us not count!						
Seriosty, counting is diftewt						
$\begin{gathered} \text { Legendre } \sim 1808: \\ \text { (for } n /(\ln n-1.08366) \text {) } \end{gathered}$	Snima	$\frac{\text { Noobiney }}{\text { y }}$		Unicex	Nool	ary
	neos	150	${ }_{\text {12, }}^{1,20}$,	${ }^{9588}$	96920
	Smom	353	${ }^{3129}$		${ }_{\substack{\text { a }}}^{139}$	$1{ }^{1}$
	${ }_{5}^{6000}$	cis	${ }_{6}$ Su9	Staseo	${ }_{3} 3$	(ix
	comen		cosich	(ismee		
	¢oses	${ }^{696}$	(695			
	${ }_{\text {goseo }}$	${ }_{\text {chi }}$	(715			$1 \text { les }<1000$
Gauss, Legendre and company countad pimis up to $n=400000$ and more That took years						
- Question I What is the leading gromit (of the number of primes)?						
-						-rsa

Leading growth for "groups"

Coulembier-Ostrik ~ 2023 We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[{\sqrt[~]{b}}]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

The recurrent case - everything goes

- We randomby waik on some (coonocted) graph - at each step choose the next step/ddge randomly but equally likely "coin flip walk
- Question How often do we visit a vertex?
- Recurrent :- We will hit every point Infinitedy aften with P(robability)-1
- Example Every (random walk on a) finite graph is rocurrent

m(n)-L(n)| < -1, n
m(n)-L(n)| < -1, n

The recurrent case - everything goes

The recurrent case - everything goes

Polya $\sim 1921 b_{n}(V)$ for V a faithfui Γ-rep in chaz zeran is recurrent $\#+r$ is virtually Z^{d} ford $d \in[0.12]$

- Virtually means we allow extensions by finite group

Thanks for your attention!

