


Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Let us not count!

▶ Asymptotically equal f ∼ g if limn→∞ f (n)/g(n) → 1

▶ Logarithmic integral Li(x) =
∫ x

2
1/ ln(t)dt

▶ Question 2 What is the growth (of the number of primes) asymptotically?

▶ Answer 2 We have π(n) ∼ n/ log(n) ∼ Li(n)

Seriously, counting is difficult!
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Let us not count!

▶ Asymptotically equal does not imply that the difference is good

▶ |f (n)− g(n)| is a measurement of how good the approximation is

▶ Question 3 What is variance from the expected value (Li(n))?

▶ Conjectural answer 3 We have |π(n)− Li(n)| ∈ O(n1/2 log n) or

|π(n)− Li(n)| ≤ 1
8πn

1/2 log n (for n ≥ 2657)

Seriously, counting is difficult!
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Let us not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (in monoidal categories)

often satisfies the above

▶ h is often a constant but sometimes h is more complicated

Seriously, counting is difficult!
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Let us not count!

▶ Task For various counts bn in monoidal categories where counting is too hard

try to find:

▶ The dominating growth β

▶ An asymptotic formula “a(n) = h · nτ · βn”

▶ If possible bound the variance |bn − an|

Seriously, counting is difficult!
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⊗ cat counts – char zero
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A log plot – we will have log plots today

▶ Γ = a group-thing (more details later)

▶ K = any ground field, V = any fin dim Γ-rep

▶ Problem Decompose V⊗n - too difficult , better: count summands

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Fractal behavior in monoidal categories Or: SL2, Cantor and Sierpinski June 2024 π / 5



⊗ cat counts – char zero
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = Sym2C2 (the 3d simple), then

{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Fractal behavior in monoidal categories Or: SL2, Cantor and Sierpinski June 2024 π / 5



⊗ cat counts – char zero

b
n
1/n

3

1 5 10 50 100 500 1000

1.0

1.5

2.0

2.5

3.0

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = Sym2C2 (the 3d simple), then

{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
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Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Fractal behavior in monoidal categories Or: SL2, Cantor and Sierpinski June 2024 π / 5



⊗ cat counts – char zero

▶ Theorem A The dominating growth is always the dimension (proven for all

semigroup superschemes Γ, all fields, all fd reps V )

▶ Theorem B nτ only depends on Γ (proven for all groups, characteristic zero

fields, all fd reps V )

▶ Theorem C h takes only finitely many values (proven for all groups,

characteristic zero fields, all fd reps V )

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
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PSL2(F7)

K = F2

V=any 3d simple

: bn ∼ 15/168 · n0 · 3n

Variance :

▶ Γ = a finite group, K = any ground field, V = any fin dim Γ-rep

▶ Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He ∼2024 This works as in char zero

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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▶ Done char zero: all groups; char p: finite groups
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▶ For p = 3, let L−1/2 be the simple rep of highest weight −1/2

▶ can = the dimension of its weight space of weight −1/2− n

▶ bn =
∑n

k=0 cak , which quantifies the growth of L−1/2 satisfies h(n) · nτ · βn

with β = 1 Recall: if you see the above, take the sum
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bn

,

Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase
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▶ For p = 2, let Ln be the simple rep of highest weight n ∈ N
▶ dim Ln = the dimension of it

▶ bn =
∑n

k=0 dim Lk , which quantifies the growth of Ln satisfies h(n) · nτ · βn
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p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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h, p = 2:

h, p = 2:

▶ New 1 τ = 1/2 logp
p+1
2 − 1 = dim of ??? ≈ −0.708 for p = 2

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal
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zoom in h, p = 2:

▶ h is really insane It has ∞ many nonzero Fourier coefficients Ln (highly

oscillating)

▶ Some analytic number theory going on:

▷ The Ln involve the (Hurwitz) zeta and Gamma function

▷ There are functional equations akin to Mahler functions and Dirichlet’s
L-function

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)
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p+1
2

−1 · 2n
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Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Let us not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (in monoidal categories)

often satisfies the above

▶ h is often a constant but sometimes h is more complicated
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(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Let us not count!
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⊗ cat counts – char zero

b
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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⊗ cat counts – char zero

▶ Theorem A The dominating growth is always the dimension (proven for all

semigroup superschemes Γ, all fields, all fd reps V )

▶ Theorem B nτ only depends on Γ (proven for all groups, characteristic zero

fields, all fd reps V )

▶ Theorem C h takes only finitely many values (proven for all groups,

characteristic zero fields, all fd reps V )

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :
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bn = middle knomials for V = Symk−1C2. Hence:
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h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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⊗ cat counts – prime char

▶ Done char zero: all groups; char p: finite groups

▶ Next Γ = SL2(F̄p), K = F̄p

▶ We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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⊗ cat counts – prime char

bn

,

Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence
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−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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⊗ cat counts – prime char

p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category

Fractal behavior in monoidal categories Or: SL2, Cantor and Sierpinski June 2024 4 / 5

⊗ cat counts – prime char

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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There is still much to do...

Thanks for your attention!
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Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Let us not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (in monoidal categories)

often satisfies the above

▶ h is often a constant but sometimes h is more complicated

Seriously, counting is difficult!
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Let us not count!

▶ Task For various counts bn in monoidal categories where counting is too hard

try to find:
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⊗ cat counts – char zero

b
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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⊗ cat counts – char zero

▶ Theorem A The dominating growth is always the dimension (proven for all

semigroup superschemes Γ, all fields, all fd reps V )

▶ Theorem B nτ only depends on Γ (proven for all groups, characteristic zero

fields, all fd reps V )

▶ Theorem C h takes only finitely many values (proven for all groups,

characteristic zero fields, all fd reps V )

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:
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3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:
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6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is for β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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⊗ cat counts – prime char

▶ Done char zero: all groups; char p: finite groups

▶ Next Γ = SL2(F̄p), K = F̄p

▶ We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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⊗ cat counts – prime char

bn

,

Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase
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⊗ cat counts – prime char

p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:
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Recall the char zero results:
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Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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⊗ cat counts – prime char

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS
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After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2

Something similar works for the Hecke category
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There is still much to do...

Thanks for your attention!
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