Fractal behavior in monoidal categories

Or: SL2, Cantor and Sierpinski

Happy pride month!

I report on work of Coulembier, Etingof and Ostrik

Let us not count!

- Prime number function $\pi(n)=\#$ primes $\leq \mathrm{n}$
- Counting primes is very tricky as primes "pop up randomly"
- Question 1 What is the leading growth (of the number of primes)?
- Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term $c(n)$

Let us not count!

Seriously, counting is difficult!						
Legendre ~1808: (for $n /(\ln n-1.08366)$)	Limite \boldsymbol{x}	$\overbrace{\text { par la formule }}^{\text {Nomb }}$	$\frac{\text { bre } y}{\text { par les Tables. }}$	Limite \boldsymbol{x}	$\mid \overbrace{\text { par Ia formule. }}^{\text {Noml }}$	$\underbrace{\text { bre }}_{\text {par les Tables. }}$.
	10080	1230	1230	100000	9588	9592
	20000	2268	2263	150000	13844	13849
	30000	3252	3246	200000	${ }^{17982}$	${ }^{1} 7984$
	40000	4205	4204	250000	22035	22045
	50000	5136	5134	300000	26023	25998
	60000	6049	6058	550000	${ }^{29969}$	29977
	70000	6949	6936	400000	33854	3386ı
	80000	7838	$7_{0}^{83} 7$	Acctu	ally, \#prim	es <1000
	90000	8717	8713		$=1229$.	

Gauss, Legendre and company counted primes up to $n=400000$ and more That took years (your IPhone can do that in seconds...humans have advanced!)

- Question 1 What is the leading growth (of the number of primes)?
- Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term $c(n)$

Let us not count!

- Asymptotically equal $f \sim g$ if $\lim _{n \rightarrow \infty} f(n) / g(n) \rightarrow 1$
- Logarithmic integral $\operatorname{Li}(x)=\int_{2}^{x} 1 / \ln (t) d t$
- Question 2 What is the growth (of the number of primes) asymptotically?
- Answer 2 We have $\pi(n) \sim n / \log (n) \sim \operatorname{Li}(n)$

Let us not count!

- Asymptotically equal does not imply that the difference is good
- $|f(n)-g(n)|$ is a measurement of how good the approximation is
- Question 3 What is variance from the expected value $(\operatorname{Li}(n))$?
- Conjectural answer 3 We have $|\pi(n)-L i(n)| \in O\left(n^{1 / 2} \log n\right)$ or $|\pi(n)-L i(n)| \leq \frac{1}{8 \pi} n^{1 / 2} \log n($ for $n \geq 2657)$

Let us not count!

$b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}$

$h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}_{>0}$ is a function bounded away from $0, \infty$, n^{τ} is the subexponential factor, $\tau \in \mathbb{R}$,
β^{n} is the exponential factor, $\beta \in \mathbb{R}_{\geq 1}$.

- Ansatz: What to expect from not counting
- Any sequence of numbers b_{n} counting something (in monoidal categories) often satisfies the above
- h is often a constant but sometimes h is more complicated

Examples

(1) (Prime counting function $\left.\pi^{\prime}(n)=\pi\left(e^{n}\right)\right) \sim 1 \cdot n^{-1} \cdot e^{n}$
(2) (Number of partitions of $\left.n^{2}\right) \sim 1 /(4 \sqrt{3}) \cdot n^{-2} \cdot\left(e^{\sqrt{2 / 3} \pi}\right)^{n}$
(3) (Number of trees with n vertices) $\sim C \cdot n^{-5 / 2} \cdot D^{n}$ with $C \approx 0.535, D \approx 2.996$
(4) (Rabbit counting à la Fibonacci) $\sim \sqrt{5} \cdot 1=n^{0} \cdot \phi^{n}$
(5) $\left(\right.$ Middle binomials $\left.\binom{n}{n / 2}\right) \sim \sqrt{2 / \pi} \cdot n^{-1 / 2} \cdot 2^{n}$

- h is often a constant but sometimes h is more complicated

Let us not count!

Examples (cont.)

\#mult. partitions:

Multiplicative partition $=$ an ordered way of writing an integer as a product of positive integers ≥ 2, e.g. $12=3 \cdot 2 \cdot 2$

Better to look at: the average $\sum_{k=1}^{n} m(k) / n, m(k)=\#$ mult. partitions (Average \#mult. partitions of $e^{n^{2}}$) $\sim 1 /(2 \pi) \cdot n^{-3 / 2} \cdot\left(e^{2}\right)^{n}$

often satisfies the above

- h is often a constant but sometimes h is more complicated

Examples (cont.)

The average $\sum_{k=1}^{n} \operatorname{agnu}(k) / n$, $\operatorname{agnu}(k)=\#$ abelian groups of order k
(Average \#abelian groups of order n) $\sim \prod_{j \geq 2} \zeta(j) \cdot 1=n^{0} \cdot 1=1^{n}, \prod_{j \geq 2} \zeta(j) \approx 2.295$

Let us not count!

© 8
 Leading growth

Asymptotic

"Variance"

- Task For various counts b_{n} in monoidal categories where counting is too hard try to find:
- The dominating growth β
- An asymptotic formula "a(n) $=h \cdot n^{\tau} \cdot \beta^{n "}$
- If possible bound the variance $\left|b_{n}-a_{n}\right|$
cat counts - char zero

- $\Gamma=$ a group-thing (more details later)
- $\mathbb{K}=$ any ground field, $V=$ any fin dim Г-rep
- Problem Decompose $V^{\otimes n}$ - too difficult, better: count summands

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$ (vector rep), then

$$
\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

Research task Copy the sequence and put it into OEIS

Research task Copy the sequence and put it into OEIS

Research task Copy the sequence and put it into OEIS

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=S y m^{2} \mathbb{C}^{2}$ (the 3d simple), then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Research task Copy the sequence and put it into OEIS
\otimes cat counts - char zer $b_{n}=$ middle trinomials Hence:

$1.5 \quad b_{n}=$ middle k nomials for $V=S^{\prime} m^{k-1} \mathbb{C}^{2}$. Hence:

$$
\begin{aligned}
& b_{n} \sim \sqrt{6 /\left(\left(k^{2}-1\right) \pi\right)} \cdot n^{-1 / 2} \cdot k^{n} \\
& \left|b_{n}-a_{n}\right| \sim C \cdot n^{-3 / 2} \cdot k^{n}
\end{aligned}
$$

$b_{n}=b_{n}^{\Gamma, V}=$ num \quad Conjecture $\left(\right.$ for $\left.b_{n}\right) \quad$ (with multiplicities)

- Example $\Gamma=\S \quad$ Dominating growth is for $\beta=\operatorname{dim}_{\mathbb{K}} V$ then
$\left\{1,1,3,7, \begin{array}{c}\begin{array}{c}\text { Subexponential factor } n^{\tau} \text { only depends on } \Gamma \\ h \text { is a scalar }\end{array} \\ \hline \text { r } n=0, \ldots, 10 . .\end{array}\right.$

Research task Copy the sequence and put it into OEIS

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

Dihedral group of order $10, \mathbb{K}=\mathbb{C}, V=$ any simple 2 d

$$
b_{n} \sim\left(\frac{7}{10}+\frac{1}{5}(-1)^{n}\right) \cdot n^{0} \cdot 2^{n}
$$

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)
cat counts - prime char

- $\Gamma=$ a finite group, $\mathbb{K}=$ any ground field, $V=$ any fin dim Γ-rep
- Coulembier-Etingof-Ostrik, Lacabanne-Vaz, He ~2024 This works as in char zero

- Done char zero: all groups; char p: finite groups
- Next $\Gamma=S L_{2}\left(\overline{\mathbb{F}}_{p}\right), \mathbb{K}=\overline{\mathbb{F}}_{p}$
- We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:
Haboush ~1980 (first)
Carter-Cline ~1976 (second)
Coulembier-Etingof-Ostrik ~2024 (put together)
After that The monoidal case due to:
Larsen, Coulembier-Etingof-Ostrik ~2024

- Done char zero: all groups; char p: finite groups
- Next $\Gamma=S L_{2}\left(\overline{\mathbb{F}}_{p}\right), \mathbb{K}=\overline{\mathbb{F}}_{p}$
- We will see a remarkable complexity jump

- For $p=3$, let $L_{-1 / 2}$ be the simple rep of highest weight $-1 / 2$
- $c a_{n}=$ the dimension of its weight space of weight $-1 / 2-n$
- $b_{n}=\sum_{k=0}^{n} c a_{k}$, which quantifies the growth of $L_{-1 / 2}$ satisfies $h(n) \cdot n^{\tau} \cdot \beta^{n}$ with $\beta=1$ Recall: if you see the above, take the sum

cat counts - prime char

- New $1 \tau=\log _{3} 2=\operatorname{dim}$ of Cantor set ≈ 0.631
- New $2 h$ is insane: it approaches a periodic function akin to devil's staircase

cat counts - prime char

- New $2 h$ is insane: it approaches a periodic function akin to devil's staircase

cat counts - prime char

- For $p=2$, let L_{n} be the simple rep of highest weight $n \in \mathbb{N}$
- $\operatorname{dim} L_{n}=$ the dimension of it
- $b_{n}=\sum_{k=0}^{n} \operatorname{dim} L_{k}$, which quantifies the growth of L_{n} satisfies $h(n) \cdot n^{\tau} \cdot \beta^{n}$ with $\beta=1$ Recall: if you see the above, take the sum
cat counts - prime char

- New $1 \tau=1+\log _{p} \frac{p+1}{2}=\operatorname{dim}$ of Sierpinski's gasket ≈ 1.682 for $p=5$
- New $2 h$ is again insane
cat counts - prime char

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\overline{\mathbb{F}}_{p}, V=\overline{\mathbb{F}}_{p}^{2}$ (vector rep), then

$$
\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

Research task Copy the sequence and put it into OEIS
cat counts - prime char
$-b_{n}^{1 / n}$ 2

Research task Copy the sequence and put it into OEIS

cat counts - prime char

- New $1 \tau=1 / 2 \log _{p} \frac{p+1}{2}-1=\operatorname{dim}$ of ??? ≈-0.708 for $p=2$
- New $2 h$ is again insane

cat counts - prime char

- h is really insane It has ∞ many nonzero Fourier coefficients L_{n} (highly oscillating)
- Some analytic number theory going on:
\triangleright The L_{n} involve the (Hurwitz) zeta and Gamma function
\triangleright There are functional equations akin to Mahler functions and Dirichlet's L-function

$$
b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}
$$

Recall the char zero results:

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

Wannabe theorem 1 in prime characteristic
Theorem B also holds (Theorem A is always true, Theorem C is false)

- $b_{0}-b_{s}^{r, V}$-number of indecomposable summands of V^{20} (with multiplicities)
- Example $\Gamma-S L_{2}, \mathrm{~K}-\mathrm{C}_{1}, \mathrm{~V}-\mathrm{C}^{2}$ (wector rep), then
$\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n}$ for $n=0, \ldots, 10$.
Research task copy the sequence and put it into oels

- New $1 \mathrm{r}-\log _{1} 2-$ dim of Cantar set ≈ 0.631
- New $2 h$ is insane: it approaches a periodic function akin to devil's staicase

Let us not count!

$$
b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}
$$

$h: \mathbb{Z}_{\geq_{0}} \rightarrow \mathbb{R}_{>0}$ is a function bounded away from $0, \infty$, n^{\top} is the subexponential factor, $\tau \in \mathbb{R}$,
β^{n} is the exponential factor, $\beta \in \mathbb{R}_{\geq 1}$.

- Ansatr: What to expect from not counting
- Any sequence of numbers b_{n} counting something (in manoidal categoriss) often satisfies the above
- h is often a constant but sometimes h is more complicated

\& cat counts - char zero

- Theorem A The dominating grometh is always the dimercion (proven for all semigroup superschemes r, all fields, al fd reps V)
- Theorem B 的 only depends on Γ (proven for all groups, duaracteristic zero fields. all fo reps V)
- Theorem C h takes only finitely many values (proven for all groups, chanateristic zero fields, all fd repss V)

- New 1 1 $\tau-1+\log _{p} \frac{p+1}{2}-$ dim of Sierpinski's gasket ≈ 1.682 for $p=5$ - New 2 his again insane

Let us not count!

- Taski For varicus counts h_{s}, in moncidal categaies where counting is too hard ry to find:
- The dominating growth

- If possible bound the variance $\left|b_{n}-a_{n}\right|$

8 cat counts - prime char

- Done ctar zero: all groups; char p: finite groups
- Next $\mathrm{r}-\mathrm{SL} L_{2}\left(\mathrm{P}_{p}\right), \mathrm{K}-\hat{p}_{p}$
- We will see a remarkable compleaty jump
\qquad

- $b_{n}=v_{0}, V$-number of indecomposable summands of V en (with multiplicitics)
- Example $\mathrm{T}-\mathrm{SL}_{2}, \mathrm{~K}-\mathbb{P}_{p, \mathrm{c}} \mathrm{V}-\mathrm{P}_{p}^{2}($ vector rep $)$, then

$$
\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Ressarch tash Copy the sequence and put it into OEIS

There is still much to do.

- $b_{0}-b_{s}^{r, V}$-number of indecomposable summands of V^{20} (with multiplicities)
- Example $\Gamma-S L_{2}, \mathrm{~K}-\mathrm{C}_{1}, \mathrm{~V}-\mathrm{C}^{2}$ (wector rep), then
$\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n}$ for $n=0, \ldots, 10$.
Research task copy the sequence and put it into oels

- New $1 \mathrm{r}-\log _{1} 2-$ dim of Cantar set ≈ 0.631
- New $2 h$ is insane it 2pproaches a periodic function atin to devil's staircase

Let us not count!
Let us not count!

$$
b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}
$$

$h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}_{>0}$ is a function bounded away from $0, \infty$, n^{\top} is the subexponential factor, $\tau \in \mathbb{R}$,
β^{n} is the exponential factor, $\beta \in \mathbb{R}_{\geq 1}$.

- Ansatr: What to expect from not counting
- Any sequence of numbers b_{n} counting something (in monoidal categoris) often satisfies the above
- h is often a constant but sometimes h is more complicated

8 cat counts - char zero

- Theorem A The dominating grometh is always the dimencion (proven for all semigroup superschemes r, all fields, al fd reps V)
- Theorem B ir only depends on Γ (proven for all groups, characteristic zero fields all fo reps V)
- Theorem C h t takes only finitely many values (proven for all groups, chancteristic zero fields, all fd reps V)

- New 1 1 $\tau-1+\log _{p} \frac{p+1}{2}-$ dim of Seerpinski's gasket ≈ 1.682 for $p=5$
- New 2 his again insane

- Task For varicus counts h_{s}, in moncidal categaies where counting is too hard ry to find:
- The dominating growth β
- An asymptotic formula " $(n)-h \cdot n^{*} \cdot$ pn$^{n+}$
\rightarrow If possible bound the variance $\left|b_{n}-a_{n}\right|$

8 cat counts - prime char

- Done clar zero: 2ll groups; char p: finite groups
- Next $\mathrm{r}-\mathrm{SL} L_{2}\left(\mathrm{P}_{p}\right), \mathrm{K}-\hat{p}_{p}$
- We will see a remarkable compleaty jump
\qquad

- $b_{n}=v_{0}, V$-number of indecomposable summands of V en (with multiplicitics)
- Example $\mathrm{T}-\mathrm{SL}_{2}, \mathrm{~K}-\mathbb{P}_{p, 0}, \mathrm{~V}-\mathbb{F}_{p}^{2}$ (vector rep), then

$$
\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Ressarch tash Copy the sequence and put it into OEIS

Thanks for your attention!

