Analytic theory of monoidal categories

• Γ = some group

▶ \mathbb{K} = any ground field, V = any fin dim Γ -rep

• Problem Find the growth rate of $b_n = \#$ inde. summands in $V^{\otimes n}$

Finite groups - semisimple case

• Reminder For finite groups we always have

h='scalar' $\tau = 0$ trivial subexponential factor $\beta = \dim_{\mathbb{K}} V$ exponential factor

Question What happens for more general groups?

Theorem (subexp. factor) For char K = 0, the following are equivalent:

 b_n ∈ Θ((dim_K V)ⁿ)
 The connected component of the Zariski closure of the image of Γ in GL(V) is a torus

 Translation Read (i) as τ = 0; read (ii) as Γ = Z^m ⋊ (finite group)

Analytic theory of monoidal categories

Or: Strategies to avoid counting

July 2024 2 / 5

 $\sim h(n) \cdot n^{\tau}$

 $h: \mathbb{Z}_{\geq 0} \to \mathbb{R}_{>0}$ is a function bounded away from $0, \infty$, n^{τ} is the subexponential factor, $\tau \in \mathbb{R}$, β^{n} is the exponential factor, $\beta \in \mathbb{R}_{>1}$.

- Ansatz: What to expect from not counting
- Any sequence of numbers b_n counting something (not just in monoidal categories) often satisfies the above
- ▶ *h* is often a constant but sometimes *h* is more complicated

• Question How large (dim wise) do reps of S_n get?

• Compare $|S_n| = n! \sim \text{above and } (\# \text{ partitions of } n) \sim 1/(4\sqrt{3}) \cdot n^{-1} \cdot (e^{\sqrt{2/3}\pi})^{\sqrt{n}}$

• Hence, one should expect that S_n has large reps and indeed $e^{-n}(n/e)^{n/2} < \max \dim(S_n$ -reps)

▶ Γ = a group (*SL*₂(\mathbb{C}) most of the time)

▶ $\mathbb{K} = \mathbb{C}$, V = any fin dim Γ -rep

• Problem Decompose $V^{\otimes n}$ - too difficult, better: count summands

Analytic theory of monoidal categories

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = C² (vector rep), then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

Research task Copy the sequence and put it into OEIS

Research task Copy the sequence and put it into OEIS

Analytic theory of monoidal categories

Analytic theory of monoidal categories

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym²C² (the 3d simple), then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

Research task Copy the sequence and put it into OEIS

Research task Copy the sequence and put it into OEIS

Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ , all fields, all fd reps V)

• Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)

► Theorem C *h* takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps *V*)

Analytic theory of monoidal categories

Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ , all fields, all fd reps V)

• Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)

Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

Analytic theory of monoidal categories

- ▶ Γ = a finite group, \mathbb{K} = any ground field, V = any fin dim Γ -rep
- ► Coulembier-Etingof-Ostrik, Lacabanne-Vaz, He ~2024 This works as in char zero

• Next
$$\Gamma = SL_2(\bar{\mathbb{F}}_p), \mathbb{K} = \bar{\mathbb{F}}_p$$

► We will see a remarkable complexity jump

Analytic theory of monoidal categories

Done char zero: all groups; char p: finite groups

• Next
$$\Gamma = SL_2(\bar{\mathbb{F}}_p), \mathbb{K} = \bar{\mathbb{F}}_p$$

▶ We will see a remarkable complexity jump

- For p = 3, let $L_{-1/2}$ be the simple rep of highest weight -1/2
- ca_n = the dimension of its weight space of weight -1/2 n
- ► $b_n = \sum_{k=0}^n ca_k$, which quantifies the growth of $L_{-1/2}$ satisfies $h(n) \cdot n^{\tau} \cdot \beta^n$ with $\beta = 1$ Recall: if you see the above, take the sum

• New 1 $\tau = \log_3 2 = \dim$ of Cantor set ≈ 0.631

New 2 h is insane: it approaches a periodic function akin to devil's staircase

Analytic theory of monoidal categories

▶ For p = 2, let L_n be the simple rep of highest weight $n \in \mathbb{N}$

- dim L_n = the dimension of it
- ► $b_n = \sum_{k=0}^n \dim L_k$, which quantifies the growth of L_n satisfies $h(n) \cdot n^{\tau} \cdot \beta^n$ with $\beta = 1$ Recall: if you see the above, take the sum

New 1 τ = 1 + log_p ^{p+1}/₂ = dim of Sierpinski's gasket ≈ 1.682 for p = 5
 New 2 h is again insane

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = F
_p, V = F
_p² (vector rep), then

 $\{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99\}, b_n \text{ for } n = 0, ..., 10.$

Research task Copy the sequence and put it into OEIS

Analytic theory of monoidal categories

Analytic theory of monoidal categories

- ▶ *h* is really insane It has ∞ many nonzero Fourier coefficients L_n (highly oscillating)
- ► Some analytic number theory going on:
 - \triangleright The L_n involve the (Hurwitz) zeta and Gamma function
 - \vartriangleright There are functional equations akin to Mahler functions and Dirichlet's L-function

Analytic theory of monoidal categories

Analysis theory of manufact energoins for Strategies to avail counting

General groups - characteristic zero

- Theorem A The dominating growth is always the dimension (proven for all migroup superschemes (, all fields, all fd reps V)
- Theorem B n° only depends on Γ (proven for all groups, characteristic zero elds, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

SL2 - prime characteristic

New 2 h is again insare

for Strategies in solid counting Auty 26210 A / 5

Reminder: How we do not count!

SL2 - prime characteristic

And do from a smalld country

SL2 - prime characteristic

 b_n = b^T_nV =number of indecomposable summands of V^{⊗n} (with multiplicities) ► Example $\Gamma = SL_2$, $K = \mathbb{F}_{p}$, $V = \mathbb{F}_{p}^2$ (vector rep), then

(1.1.1.3.3.9.9.29.29.99.99), b, for n = 0,....10

Research task Copy the sequence and put it into OEIS categories Or Strangin to anid matrice Adjust # / 5

There is still much to do...

h is often a constant but sometimes h is more complicated

 Augin two of manifed angels
 for Storage a wait maning
 aug bin
 b /

General groups - characteristic zero

- Theorem A migroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{*} only depends on Γ (proven for all groups, characteristic zero feids, all fd reps V)
- Theorem C A takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)
- Analysis theory of memory and the test of the second secon

SL2 - prime characteristic

New 2 h is again insane
 Anys they downline anysis
 for foreign is suit coming

Reminder: How we do not count!

SL2 - prime characteristic

Analysis theory of monoined companies . Or: Strungies to assist meeting . Any Mill &

SL2 - prime characteristic

- b_n = b^{r,V}_n=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = F_m, V = F²_n (vector rep), then
- - $\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{\alpha} \text{ for } n=0,\ldots,10$

Research task Copy the sequence and put it into OEIS

Thanks for your attention!

Auty 26210 A / 5