


Reminder: How we do not count!
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A log plot – we will have log plots today

▶ Γ = some group

▶ K = any ground field, V = any fin dim Γ-rep

▶ Problem Find the growth rate of bn=# inde. summands in V⊗n

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Reminder: How we do not count!

bn ∼ an = h · nτ · βn

h=bounded function

nτ subexponential factor

βn exponential factor
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Reminder: How we do not count!
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Reminder: How we do not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (not just in monoidal
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Reminder: How we do not count!

▶ Question How large (dim wise) do reps of Sn get?

▶ Compare |Sn| = n! ∼ above and (# partitions of n)∼ 1/(4
√
3) · n−1 · (e

√
2/3π)

√
n

▶ Hence, one should expect that Sn has large reps and indeed

e−n(n/e)n/2 < max dim(Sn-reps)

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
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General groups - characteristic zero
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A log plot – we will have log plots today

▶ Γ = a group (SL2(C) most of the time)

▶ K = C, V = any fin dim Γ-rep

▶ Problem Decompose V⊗n - too difficult , better: count summands

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 π / 5



General groups - characteristic zero
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS
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For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 π / 5



General groups - characteristic zero
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)
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General groups - characteristic zero
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Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 π / 5



SL2 - prime characteristic

PSL2(F7)

K = F2

V=any 3d simple

: bn ∼ 15/168 · n0 · 3n

Variance :

▶ Γ = a finite group, K = any ground field, V = any fin dim Γ-rep

▶ Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He ∼2024 This works as in char zero

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 4 / 5



SL2 - prime characteristic

▶ Done char zero: all groups; char p: finite groups
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SL2 - prime characteristic
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▶ For p = 3, let L−1/2 be the simple rep of highest weight −1/2

▶ can = the dimension of its weight space of weight −1/2− n
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SL2 - prime characteristic
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Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase
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SL2 - prime characteristic
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▶ For p = 2, let Ln be the simple rep of highest weight n ∈ N
▶ dim Ln = the dimension of it

▶ bn =
∑n
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SL2 - prime characteristic

p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane
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SL2 - prime characteristic

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic
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For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)
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SL2 - prime characteristic

h, p = 2:

h, p = 2:

▶ New 1 τ = 1/2 logp
p+1
2 − 1 = dim of ??? ≈ −0.708 for p = 2

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic
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SL2 - prime characteristic

zoom in h, p = 2:

▶ h is really insane It has ∞ many nonzero Fourier coefficients Ln (highly

oscillating)

▶ Some analytic number theory going on:

▷ The Ln involve the (Hurwitz) zeta and Gamma function

▷ There are functional equations akin to Mahler functions and Dirichlet’s
L-function

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic
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Reminder: How we do not count!

▶ Theorem (subexp. factor) For charK = 0, the following are equivalent:

(i) bn ∈ Θ((dimK V )n)

(ii) The connected component of the Zariski closure of the image of Γ in GL(V ) is a torus

▶ Translation Read (i) as τ = 0; read (ii) as Γ = Zm ⋊ (finite group)

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Reminder: How we do not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (not just in monoidal

categories) often satisfies the above

▶ h is often a constant but sometimes h is more complicated

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Reminder: How we do not count!

▶ Question How large (dim wise) do reps of Sn get?

▶ Compare |Sn| = n! ∼ above and (# partitions of n)∼ 1/(4
√
3) · n−1 · (e

√
2/3π)

√
n

▶ Hence, one should expect that Sn has large reps and indeed

e−n(n/e)n/2 < max dim(Sn-reps)

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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General groups - characteristic zero

b
n
1/n

2
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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General groups - characteristic zero

▶ Theorem A The dominating growth is always the dimension (proven for all

semigroup superschemes Γ, all fields, all fd reps V )

▶ Theorem B nτ only depends on Γ (proven for all groups, characteristic zero

fields, all fd reps V )

▶ Theorem C h takes only finitely many values (proven for all groups,

characteristic zero fields, all fd reps V )

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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SL2 - prime characteristic

▶ Done char zero: all groups; char p: finite groups

▶ Next Γ = SL2(F̄p), K = F̄p

▶ We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

bn

,

Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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There is still much to do...

Thanks for your attention!
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Reminder: How we do not count!

▶ Theorem (subexp. factor) For charK = 0, the following are equivalent:

(i) bn ∈ Θ((dimK V )n)

(ii) The connected component of the Zariski closure of the image of Γ in GL(V ) is a torus

▶ Translation Read (i) as τ = 0; read (ii) as Γ = Zm ⋊ (finite group)

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Reminder: How we do not count!

▶ Ansatz: What to expect from not counting

▶ Any sequence of numbers bn counting something (not just in monoidal

categories) often satisfies the above

▶ h is often a constant but sometimes h is more complicated

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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Reminder: How we do not count!

▶ Question How large (dim wise) do reps of Sn get?

▶ Compare |Sn| = n! ∼ above and (# partitions of n)∼ 1/(4
√
3) · n−1 · (e

√
2/3π)

√
n

▶ Hence, one should expect that Sn has large reps and indeed

e−n(n/e)n/2 < max dim(Sn-reps)

Three features to note

(1) The exponential factor only depends on the representation

(2) The subexponential factor does not depend on the representation

(3) The asymptotic only depends on the image of Γ in GL(V )

Note that we studied “small” images of Γ in GL(V ) (finite groups)

Next, we focus on Γ = GL(V ) equiv. Γ = SL(V ), say for K = C

dimC V = 1 is boring, so we start with dimC V = 2

Recall

(1) The subexponential factor is always β = dimK V

(2) We have bn ≤ (dimK V )n

(3) Thus, the τ in the subexponential factor satisfies τ ≤ 0

Examples

(1) (Prime counting function π′(n) = π(en)) ∼ 1 · n−1 · en

(2) (Number of partitions of n2) ∼ 1/(4
√
3) · n−2 · (e

√
2/3π)n

(3) (Number of trees with n vertices) ∼ C · n−5/2 · Dn with C ≈ 0.535,D ≈ 2.996

(4) (Rabbit counting à la Fibonacci) ∼
√
5 · 1 = n0 · ϕn

(5) (Middle binomials
(

n
n/2

)
) ∼

√
2/π · n−1/2 · 2n

Examples (cont.)

Better to look at: the average
∑n

k=1 m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of en
2

) ∼ 1/(2π) · n−3/2 · (e2)n

Examples (cont.) (This is a reminder)

The average
∑n

k=1 agnu(k)/n, agnu(k)=#abelian groups of order k

(Average #abelian groups of order n) ∼ ∏
j≥2 ζ(j) · 1 = n0 · 1 = 1n ,

∏
j≥2 ζ(j) ≈ 2.295
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General groups - characteristic zero

b
n
1/n

2
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A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2 (vector rep), then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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General groups - characteristic zero

▶ Theorem A The dominating growth is always the dimension (proven for all

semigroup superschemes Γ, all fields, all fd reps V )

▶ Theorem B nτ only depends on Γ (proven for all groups, characteristic zero

fields, all fd reps V )

▶ Theorem C h takes only finitely many values (proven for all groups,

characteristic zero fields, all fd reps V )

bn = middle binomials Hence:

bn ∼
√

2/π · n−1/2 · 2n

Even the variance is doable :

|bn − an| ∼ C · n−3/2 · 2n

Proof? Scroll through the OEIS page for the middle binomials

bn = middle trinomials Hence:

bn ∼
√

3/(4π) · n−1/2 · 3n

|bn − an| ∼ C · n−3/2 · 3n

bn = middle knomials for V = Symk−1C2. Hence:

bn ∼
√

6/((k2−1)π) · n−1/2 · kn

|bn − an| ∼ C · n−3/2 · kn

Conjecture (for bn)

Dominating growth is β = dimK V
Subexponential factor nτ only depends on Γ

h is a scalar

Example

Dihedral group of order 10, K = C, V =any simple 2d
bn ∼ ( 7

10
+ 1

5
(−1)n) · n0 · 2n

Comments (char zero)

For Γ simple reductive group, τ = −#pos. roots/2
and h =scalar given by closed formula, variance=closed formula

For Γ finite group, τ = 0
and h+variance computable from the character table

The above is due to many people, e.g.:
Biane, Bryant–Kovács, Coulembier–Etingof–Ostrik, Lacabanne–Vaz, He,...

Question

What about prime characteristic?
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SL2 - prime characteristic

▶ Done char zero: all groups; char p: finite groups

▶ Next Γ = SL2(F̄p), K = F̄p

▶ We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

bn

,

Cantor’s set

h

,

Devil’s staircase

▶ New 1 τ = log3 2 = dim of Cantor set ≈ 0.631

▶ New 2 h is insane: it approaches a periodic function akin to devil’s staircase

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

p = 5:

bn

,

Sierpinski’s gasket

▶ New 1 τ = 1 + logp
p+1
2 = dim of Sierpinski’s gasket ≈ 1.682 for p = 5

▶ New 2 h is again insane

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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SL2 - prime characteristic

A loglog plot

▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = F̄p, V = F̄2
p (vector rep), then

{1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99}, bn for n = 0, ..., 10.

Research task Copy the sequence and put it into OEIS

One finds fractals in asymptotic counting problems in monoidal

categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:

Haboush ∼1980 (first)
Carter–Cline ∼1976 (second)

Coulembier–Etingof–Ostrik ∼2024 (put together)

After that The monoidal case due to:

Larsen, Coulembier–Etingof–Ostrik ∼2024

For the transcendental τ = logp(p − 1)

all of this works for general p > 2

bn = new sequence

bn ∼ h(n) · n1/2 logp
p+1
2

−1 · 2n

Recall the char zero results:

Wannabe theorem 1 in prime characteristic

Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)

Something similar works for the Hecke category
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There is still much to do...

Thanks for your attention!
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