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Reminder: How we do not count!
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A log plot — we will have log plots today
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» [ = some group

» K = any ground field, V = any fin dim -rep

» Problem Find the growth rate of b,=# inde. summands in V®"
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Reminder: How we do not count!

Finite groups - semisimple case

LJ2Z % S

» [Question What is the growth of b, for the marked reps?
- EEN

Or: How to not count iy x5

> - For finite groups we always have

> - What happens for more general groups?
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Reminder: How we do not count!

feO(qg)
Both: fe©(Qg)

c;g(n)

f(n)

c.g(n)

N,

» Theorem (subexp. factor) For char K = 0, the following are equivalent:
(i) bn € O((dime V)?)
(ii) The connected component of the Zariski closure of the image of I in GL(V) is a torus
» Translation Read (i) as 7 = 0; read (ii) as [ = Z™ x (finite group)
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Reminder: How we do not count!

Three features to note
(1) The exponential factor only depends on the representation

(2) The subexponential factor does ' not depend on the representation

(3) The asymptotic fonly’ depends on the image of ' in GL(V)

Note that we studied “small” images of ' in GL(V/) (finite groups)
Next, we focus on ' = GL(V) equiv. ' = SL(V), say for K= C

dimc V =1 is boring, so we start with dim¢ V =2

» The b lent:
a
(i) SL(2,(C){< d):a,b,c,dG(Candadbcl}
c
(ii) TTIE COMMETTET COMPONENT OT TNE ZartsKT CTosure Or tNE MTage Or T 11 \lLA\V) TS a torus

» Translation Read (i) as 7 = 0; read (ii) as [ = Z™ x (finite group)
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Reminder: How we do not count!

» | Theorerl o4 — o3
() b Good region
(”) The 00, ‘ . T ‘ s )

Recall
e subexponential factor is always 8 = dimg
1) The sub ial f is al B = dimg V
(2) We have b, < (dimg V)"

(3) Thus, the 7 in the subexponential factor satisfies 7 < 0

s Bad region

E
ol

uivalent:

/) is a torus

» Translation Read (i) as 7 = 0; read (ii) as [ = Z™ x (finite group)
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Reminder: How we do not count!

b, ~ h(n)-n" - 3"

h: Z>o — Ry is a function bounded away from 0, co,
n” is the subexponential factor, T € R,
B" is the exponential factor, B € R>;.

» Ansatz: What to expect from not counting

» Any sequence of numbers b, counting something (not just in monoidal
categories) often satisfies the above

» his often a constant but sometimes h is more complicated
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eminder: How we do not count!

= 3

Examples
(1) (Prime counting function 7'(n) = w(e")) ~ 1 - n ' .
(2) (Number of partitions of n?) ~ 1/(4v/3) - n 2 -
(3) (Number of trees with n vertices) ~ C - n—>/2 . with C = 0.535, D ~ 2.996
(4) (Rabbit counting a la Fibonacci) ~ /5 - 1= n° .

(5) (Middle binomials (,7,)) ~ \/2/x - n~'/? .

1-10% 3
25:102%°
28
810
2.0-10%%
28
610
151029 -
4-10% . o 1.0-102%9
2:1028 ’ N 5.0.102%8 | i
20 40 60 80 100 200 400 600 800 1000
CUTCEUTTCT ) TUTTS T Ou IO TITe OO

» h is often a constant but sometimes h is more complicated
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Reminder: How we do not count!

Examples (cont.)

8
#mult. partitions: °
.
2
20 40 60 80 101

ﬁ » Multiplicative partition = an ordered way of writing an integer as a product
of positive integers > 2, eg. 12=3-2.2

s

0

Better to look at: the average >.,_, m(k)/n, m(k)=#mult. partitions

(Average #mult. partitions of e"2) ~ 1/(2r) -n3/? -

categories) [often satisfies the above

» h is often a constant but sometimes h is more complicated
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Examples (cont.) (This is a reminder)

Number of Abelian groups of order n; number of factorizations of 1 into

=

A000688
prime powers.
(Formerly M0064 N0020)
L1
U
Uz
240
Log(H)
35
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20] . . . .o .
15
10
0s

n

200

1000

The average Y ,_, agnu(k)/n, agnu(k)=#tabelian groups of order k

52 60) - 1=n° - [1j5, <) = 2.295

(Average #abelian groups of order n) ~ [];
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Reminder: How we do not count!

® @ n!
— (n+1)

— V2mn(n/e)"

3.0

» |Question How large (dim wise) do reps of S, get?

» Compare |S,| = n! ~ above and (# partitions of n)~ 1/(4+/3) - n=1 - (eV?*m)vV7"

» Hence, one should expect that S, has large reps and indeed
e~ "(n/e)"? < maxdim(S,-reps)
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General groups - characteristic zero

A log plot — we will have log plots today

105 (dim V)"
108 (dim W)
104+ n

(dim V)7
1000 - _—
n2
100 -
10+ / n
10 10
5 10 15 20

» [ = a group (SL2(C) most of the time)
» K=C, V =any fin dim l'-rep

» |Problem Decompose V®" - too difficult , better: count summands
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General groups - characteristic zero

2,00 2
1/n
b

1.75+ n

150" A loglog plot

125+

1.00
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» b, = b-V=number of indecomposable summands of V®" (with multiplicities)
» Example [ = SL,, K= C, V = C? (vector rep), then

{1,1,2,3,6,10,20,35, 70,126,252}, b, for n =0, ..., 10.

Research task Copy the sequence and put it into OEIS
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General groups - characteristic zero

2.00} . . . 2
I b, = middle binomials Hence: »
[ piin
1.75j VB n
I bnN\/2/7r~n_/ -2
1.50
[ — by 2n
b 2/1 2[7
1.25- Y S
[ 108
1.00 - 10°
'1 10t
000
100

» b, = bl:V=numb{

» Example [ = SLj

@1 (with multiplicities)

5 10 15 20

{1,1,2,3,6,10,20,35,70,126,252}, b, for n =0, ..., 10.

Research task Copy the sequence and put it into OEIS
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General groups - characteristic zero

9
1
1
1
1
» b,=0>b
» Examp

Even the variance is doable :

|by — a@n| ~ C-n73/2. 2"

[(by—an) 27| n3? 0.5n7%?

1

f

;
0100 }
i

i

!
0010
0001
104 L

100 200 300 400 500

Proof? Scroll through the OEIS page for the middle binomials

Research task Copy the sequence and put it into OEIS
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General groups - characteristic zero

3.0F 3
1/n
25) b}
201 A loglog plot
15}
100
1 5 10 50 100 500 1000

» b, = b-V=number of indecomposable summands of V®" (with multiplicities)
» Example [ = SL,, K= C, V = Sym?C? (the 3d simple), then

{1,1,3,7,19,51, 141, 393,1107, 3139, 8953}, b, for n =0, ..., 10.

Research task Copy the sequence and put it into OEIS
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General groups - charad p, — middle trinomials Hence:

3.0

2.5

2.0

by ~ +/3/(4n) - n7Y/2.3"

|by — @n| ~ C-n73/2.3"

A loglog plot

1/n
by

15 b, = middle knomials for V = Sym*~*C?. Hence:

by ~ /6/((k2=1)7) - n~*/% . k"

|bn — an| ~ C-n73/2. k"
LAY U

O oU TU! oUU  TUUU

» b, = bl:V=nun|

» Example [ = §

{1,1,3,7,

Conjecture (for b,)

Dominating growth is § = dimg V
Subexponential factor n” only depends on I
h is a scalar

(with multiplicities)
| then

rn=0,...,10.

Research task

Copy the sequence and put it into OEIS
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General groups - characteristic zero

A WRONG B CORRECT
onG
EXPONENTIAL|
EXPONENTIAL | GROWTH
O GROWTH! O
7&/ 4\
UNDER EXPONENTIAL
CONTROL GROWTH
GOING EXPONENTIAL
DOWN GROWTH

» | Theorem A The dominating growth is always the dimension (proven for all
semigroup superschemes T, all fields, all fd reps V)

» Theorem B n™ only depends on I (proven for all groups, characteristic zero
fields, all fd reps V)

» Theorem C h takes only finitely many values (proven for all groups,
characteristic zero fields, all fd reps V)
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General group

Example

Dihedral group of order 10, K = C, V =any simple 2d
o~ (5 + 2(=1)7) - - 2"

Dihedral Group

1.3
1.2
1.1
m=25: A/\/\AAAA- )
' VVVVV"*' at)
0.9
5 10 15 20
Comments (char zero)
» Theor ven for all
semigH For I simPIe reductive group, 7 = f.#pos. roots/2
and h =scalar given by closed formula, variance=closed formula
» Theot Bristic zero
fields For I finite group, 7 =0
and h+variance computable from the character table
> The above is due to many people, e.g.:

Biane, Bryant—Kovacs, Coulembier—Etingof—Ostrik, Lacabanne—Vaz, He,...
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General groups - characteristic zero

A WRONG B CORRECT
e EXPONENTIAL
EXPONENTIAL |
O (oRouTH O GROWTH
I~ o
A A

Question

GONG

ww | What about prime characteristic?
T =T

» | Theorem A The dominating growth is always the dimension (proven for all
semigroup superschemes T, all fields, all fd reps V)

» Theorem B n™ only depends on I (proven for all groups, characteristic zero
fields, all fd reps V)

> Theorem C h takes only finitely many values (proven for all groups,
characteristic zero fields, all fd reps V)
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SL2 - prime characteristic

PSL(2,7)
4
PSLy(F7) 8
K = F, : 2| b,~15/168-n°-3"
V=any 3d simple b(n)
1- T a(n)
5 10 15 20
PSL(2,7)
1000 1.414"
100 |bn-an|
Variance: 1o
1
0.1
) 5 10 15 20

» [ = a finite group, K = any ground field, V = any fin dim -rep
» Coulembier—Etingof—Ostrik, Lacabanne—Vaz, He ~2024 This works as in char zero
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SL2 - prime characteristic

> - char zero: all groups; char p: finite groups

» Next = SLy(F,), K=F,

» We will see a remarkable _
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SL2 - prime characteristic

One finds fractals in asymptotic counting problems in monoidal
categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:
Haboush ~1980 (first)
Carter—Cline ~1976 (second)
Coulembier—Etingof—Ostrik ~2024 (put together)

After that The monoidal case due to:
Larsen, Coulembier—Etingof—Ostrik ~2024

» Done char zero: all groups; char p: finite groups
> Next I = SLy(F,), K=TF,

» We will see a remarkable |complexity jump
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SL2 - prime characteristic

cap:

5000 10000 15000 20000

» For p=3, let L_;, be the simple rep of highest weight —1/2

» ca, = the dimension of its weight space of weight —1/2 — n

» b, =) ,_, Cak, which quantifies the growth of L_y, satisfies h(n) - n™ - 3"
with =1
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SL2 - prime characteristic

Sum Cantor ------- 0.6n%(0.631)

- nh(0.631)

bn ] Cantor's set

|
|

0.0 0.2 0.4 0.6 0.8 1.0

— n”(-0.631)*Sum Cantor
h Devil's staircase

' 100 200 300 400 500 600 700 5 e s an 58 69 78 89 98

» New 1 7 =logz2 = dim of Cantor set ~ 0.631

» New 2 his insane: it approaches a periodic function akin to devil's staircase
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SL2 - prime characteristic

n*(0.631) Sum Cantor

0.6n"(0.631)

w bn 7

Cantor's set

n(0.861) Sum Cantor
20
1000 _5
10 p=9
800
100
&0
a0
200
s/
500 1000 1500 2000 2500 3000
m(0.921) Sum Gantor

500 1000 1500 2000

For the 'transcendental 7 = log,(p — 1)
all of this works for general p > 2

— n*(-0.861)«Sum Cantor

mo881)

Sum Gartor p=5

1.0 n*(-0.861)«Sum Cantor
o

? ol
f
‘
0.4/
}
02}
i

— n7(-0.921)+Sum Cantor

" p=7 sz o
o
o
o
o

» New 1 7 = logz2 = dim of Cantor set ~ 0.631

» New 2 his insane: it approaches a periodic function akin to devil's staircase
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SL2 - prime characteristic

35
30
25
20

dim L,: O I 1 X s ool sonl ol

15

20 40 60 80 100

» For p=2, let L, be the simple rep of highest weight n € N
» dim L, = the dimension of it
» b, = ZZ:O dim Lk, which quantifies the growth of L, satisfies h(n) - n™ - 5"

with 5 =1 Recall: if you see the above, take the sum
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SL2 - prime characteristic

n'e2 suml, —h

b, s

1000

50 100 150 200

p=2 4 &

50
. Sierpinski ket Aﬁll
- ierpinski’s gasket Y

» Newl 7=1+log, ”TH = dim of Sierpinski's gasket ~ 1.682 for p =5

» New 2 h is again insane
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SL2 - prime characteristic

1/n
— b 2
200 2
bﬂn
1.75F n
A loglog plot
1.50F
125}
1.00F
1 5 10 50 100 500 1000

» b, = b-V=number of indecomposable summands of V®" (with multiplicities)

» Example [ = SL,, K=TF,, V= ]Ff, (vector rep), then

{1,1,1,3,3,9,9,29,29,99,99}, b, for n =0, ..., 10.

Research task Copy the sequence and put it into OEIS
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SL2 - prime characteristic

S b;/n 2

b, = new sequence

by ~ h(n) - n¥/21°% B3+ =1 0
—_—p=2 p=3 p=5
....... p=7 p = infty
p=infty
p=5
p=3
p=2
> b, =blV= ith multiplicities)
» Example I'

10 15 20 25 30

I1,1,1,3,3,9,9,29,29,99,99F, b, for n =0, ..., 10.

Research task Copy the sequence and put it into OEIS
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SL2 - prime characteristic

0.708

by 1
—
even n
11r
1.0
0.9
p— . 08
h,p=2:
0.7
06
0.5+
20 40 60 80 100
by 0708

even n zoom

by, n0-708

h’ p — 2: 1.037 2N

0 200 400 600 800 1000

> Newl 7=1/2log, 2t —1 = dim of ??? ~ —0.708 for p =2
» New 2 his again insane
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SL2 - prime characteristic

1.45040
1.45040
1.45040 -
zoom in h,p =2: e
1.45040

1.45039

1.45039

» his really insane It has co many nonzero Fourier coefficients L, (highly
oscillating)
» Some analytic number theory going on:
> The L, involve the (Hurwitz) zeta and Gamma function

> There are functional equations akin to Mahler functions and Dirichlet’s
L-function
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SL2 - prime ch

b, ~ h(n)-n"- 3"

>

>

>

Theorem B also holds (Theorem A is always true, Theorem C is false)

Recall the char zero results:
Theorem A The dominating growth is always the dimension (proven for all
semigroup superschemes T, all fields, all fd reps V)

Theorem B n™ only depends on I (proven for all groups, characteristic zero
fields, all fd reps V)

Theorem C h takes only finitely many values (proven for all groups,
characteristic zero fields, all fd reps V)

Wannabe theorem 1 in prime characteristic

» his really ing
oscillating)

» Some analyti

> The L, i

> There arg
L-functio]

Wannabe theorem 2 (Last talk) nts L, (highly
n

Something similar works for the Hecke category
Vi i

n

hs and Dirichlet’s
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Reminder: How we do not count! —

Frchac K = 0. th ol re sl [ o e (6 i) o s of 5. g7
o GHRRRR 5 < o~ e (4 s (0D -1 (6%
> Hence,one shouid e tht . s e 8 3 inded

() b€ O((dme V)')
() To cocad compoan o b 2 chs f g i GLLV) i

- FRERR] Resd ()27 = rad () = 2 ot govs)
o ————— i

52 - ime characteistic

— T - [ERRGRIA] The domieatingsronth s shays th dimersio (poven for 3

b 6] * | i muipicen) samiroup serchemes I, i flds. 114 rps V)

» Exompi - 5| —— N TR ——— [ T —

{1,1.2.3,6,10.20.95.70,126,282), by for 0= 0,...10. s, alt  reps V) (NG - Salf,). K~ B,
P
R cov 2 savrce wod i 6 o 0BIS cnrscterne zro flds. 1 14 reps V) > Wewil e remartle SRR
[ R —— pr—— - pr—— | et e P

512 - pime charsteistic:

T TR

omber of indacompsaiesummands of V' (vieh muléilcites)
$t3, K= By, = B} (ector ), then

. fm of S’ gaset = 1662 for p =5 (11,1339929.9.99), bk =010
N [ ———————— o [ b s g nane Copythe seqencesnd it OFIS
- e et R [ — p— e IR o e i R—

e (e e i, A eI
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Forchar K = 0, the fllowing ar sl
) o€ Of(dmg V))
() To cocad compoan o b 2 chs f g i GLLV) i

- FRERR] Resd ()27 = rad () = 2 ot govs)
e —

[ o e (6 i) o s of 5. g7
o GHRRRR 5 < o~ e (4 s (0D -1 (6%
> Hence,one shouid e tht . s e 8 3 inded

e — o oo —_S— —
FrIT—
— — - [ERRGRAA] The doninsing grouth s shaysthe dimansio (poven for 3
LA [} (wieh mottipicities) ‘semigroup superschemes ', all falds, all d reps V)
» Exompi - 5| —— N LA p——— P ———
(1,1.2.3,6,10,20,35,70,126,252), b, for n=0,..,10. ilds, all 4 egs V) o N 1 - SLa(B) K< B,
[ —————
IR oo e e s i i OIS o o s V) T —

e i AL R— — — - —

L2 - prime characterisic

[ T
> [WRWZ s insae: i spsrosches 3 priodic fuction ki o v’ srcase
e e e i

. i o Serpinsi's gashet = 1682 o p =5

Or: Strategies to avoid counti

omber of indacompsaiesummands of V' (vieh muléilcites)
$t3, K= By, = B} (ector ), then

(11,1.3.3.9,9.29.29,9,99], b, for n=0...,10.
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