Analytic theory of monoidal categories

Or: Strategies to avoid counting

This is part 3

Reminder: How we do not count!

- 「 = some group
- $\mathbb{K}=$ any ground field, $V=$ any fin dim Γ-rep
- Problem Find the growth rate of $b_{n}=\#$ inde. summands in $V^{\otimes n}$

Reminder: How we do not count!

Finite groups - semisimple case

- Question What is the growth of b_{n} for the marked reps?
- Answer
$b_{n} \sim a_{n}=h \cdot n^{\tau} \cdot \beta^{n}$
$h=$ bounded function
n^{τ} subexponential factor
β^{n} exponential factor
- Reminder For finite groups we always have

$$
h=\text { 'scalar' } \tau=0 \text { trivial subexponential factor } \beta=\operatorname{dim}_{\mathbb{K}} V \text { exponential factor }
$$

- Question What happens for more general groups?

Reminder: How we do not count!

- Theorem (subexp. factor) For char $\mathbb{K}=0$, the following are equivalent:
(i) $b_{n} \in \Theta\left(\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}\right)$
(ii) The connected component of the Zariski closure of the image of Γ in $\mathrm{GL}(V)$ is a torus
- Translation Read (i) as $\tau=0$; read (ii) as $\Gamma=\mathbb{Z}^{m} \rtimes$ (finite group)

Reminder: How we do not count!

Three features to note

(1) The exponential factor only depends on the representation
(2) The subexponential factor does not depend on the representation
(3) The asymptotic only depends on the image of Γ in $\mathrm{GL}(V)$

Note that we studied "small" images of Γ in GL(V) (finite groups)
Next, we focus on $\Gamma=\mathrm{GL}(V)$ equiv. $\Gamma=\mathrm{SL}(V)$, say for $\mathbb{K}=\mathbb{C}$
$\operatorname{dim}_{\mathbb{C}} V=1$ is boring, so we start with $\operatorname{dim}_{\mathbb{C}} V=2$
The
(i)
(ii)

$$
\mathrm{SL}(2, \mathbb{C})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{C} \text { and } a d-b c=1\right\}
$$

- Translation Read (i) as $\tau=0$; read (ii) as $\Gamma=\mathbb{Z}^{m} \rtimes$ (finite group)

Reminder: How we do not count!

Recall

(1) The subexponential factor is always $\beta=\operatorname{dim}_{\mathbb{K}} V$
(2) We have $b_{n} \leq\left(\operatorname{dim}_{\mathbb{K}} V\right)^{n}$
(3) Thus, the τ in the subexponential factor satisfies $\tau \leq 0$
(i) b_{n}
(ii) The

- Translation Read (i) as $\tau=0$; read (ii) as $\Gamma=\mathbb{Z}^{m} \rtimes$ (finite group)

Reminder: How we do not count!

$b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}$

$h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}_{>0}$ is a function bounded away from $0, \infty$, n^{τ} is the subexponential factor, $\tau \in \mathbb{R}$,
β^{n} is the exponential factor, $\beta \in \mathbb{R}_{\geq 1}$.

- Ansatz: What to expect from not counting
- Any sequence of numbers b_{n} counting something (not just in monoidal categories) often satisfies the above
- h is often a constant but sometimes h is more complicated

Reminder: How we do not count!

Examples

(1) (Prime counting function $\left.\pi^{\prime}(n)=\pi\left(e^{n}\right)\right) \sim 1 \cdot n^{-1} \cdot e^{n}$
(2) (Number of partitions of $\left.n^{2}\right) \sim 1 /(4 \sqrt{3}) \cdot n^{-2} \cdot\left(e^{\sqrt{2 / 3} \pi}\right)^{n}$
(3) (Number of trees with n vertices) $\sim C \cdot n^{-5 / 2} \cdot D^{n}$ with $C \approx 0.535, D \approx 2.996$
(4) (Rabbit counting à la Fibonacci) $\sim \sqrt{5} \cdot 1=n^{0} \cdot \phi^{n}$
(5) $\left(\right.$ Middle binomials $\left.\binom{n}{n / 2}\right) \sim \sqrt{2 / \pi} \cdot n^{-1 / 2} \cdot 2^{n}$

- h is often a constant but sometimes h is more complicated

Reminder: How we do not count!

Examples (cont.)

\#mult. partitions:

Multiplicative partition $=$ an ordered way of writing an integer as a product of positive integers ≥ 2, e.g. $12=3 \cdot 2 \cdot 2$

Better to look at: the average $\sum_{k=1}^{n} m(k) / n, m(k)=\#$ mult. partitions (Average \#mult. partitions of $e^{n^{2}}$) $\sim 1 /(2 \pi) \cdot n^{-3 / 2} \cdot\left(e^{2}\right)^{n}$ categories) often satisfies the above

- h is often a constant but sometimes h is more complicated

Examples (cont.) (This is a reminder)

The average $\sum_{k=1}^{n} \operatorname{agnu}(k) / n$, $\operatorname{agnu}(k)=\#$ abelian groups of order k
(Average \#abelian groups of order n) $\sim \prod_{j \geq 2} \zeta(j) \cdot 1=n^{0} \cdot 1=1^{n}, \prod_{j \geq 2} \zeta(j) \approx 2.295$

Reminder: How we do not count!

- Question How large (dim wise) do reps of S_{n} get?
- Compare $\left|S_{n}\right|=n!\sim$ above and (\# partitions of $\left.n\right) \sim 1 /(4 \sqrt{3}) \cdot n^{-1} \cdot\left(e^{\sqrt{2 / 3} \pi}\right)^{\sqrt{n}}$
- Hence, one should expect that S_{n} has large reps and indeed

$$
e^{-n}(n / e)^{n / 2}<\max \operatorname{dim}\left(S_{n}-\text { reps }\right)
$$

General groups - characteristic zero

- $\Gamma=$ a group $\left(S L_{2}(\mathbb{C})\right.$ most of the time $)$
- $\mathbb{K}=\mathbb{C}, V=$ any fin $\operatorname{dim} \Gamma$-rep
- Problem Decompose $V^{\otimes n}$ - too difficult, better: count summands

General groups - characteristic zero

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$ (vector rep), then

$$
\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

Research task Copy the sequence and put it into OEIS

General groups - characteristic zero

Research task Copy the sequence and put it into OEIS

General groups - characteristic zero

Research task Copy the sequence and put it into OEIS

General groups - characteristic zero

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=S y m^{2} \mathbb{C}^{2}$ (the 3d simple), then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Research task Copy the sequence and put it into OEIS

General groups - charac $b_{n}=$ middle trinomials Hence:

| 3.0 |
| :--- | :--- |
| 2.5 |\quad| $b_{n} \sim \sqrt{3 /(4 \pi)} \cdot n^{-1 / 2} \cdot 3^{n}$ |
| :--- |
| 2.0 |
| $\left\|b_{n}-a_{n}\right\| \sim C \cdot n^{-3 / 2} \cdot 3^{n}$ |
| A loglog plot |

1.5 $\quad b_{n}=$ middle knomials for $V=S y m^{k-1} \mathbb{C}^{2}$. Hence:

$$
\begin{aligned}
& b_{n} \sim \sqrt{6 /\left(\left(k^{2}-1\right) \pi\right)} \cdot n^{-1 / 2} \cdot k^{n} \\
& \left|b_{n}-a_{n}\right| \sim C^{-3 / 2} \cdot k^{n} \\
& \operatorname{TUU} \operatorname{lUU}
\end{aligned}
$$

- $b_{n}=b_{n}^{\Gamma, V}=$ num \quad (with multiplicities)
- Example $\Gamma=\left\{\quad\right.$ Dominating growth is $\beta=\operatorname{dim}_{\mathbb{K}} V$

Research task Copy the sequence and put it into OEIS

General groups - characteristic zero

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

Dihedral group of order $10, \mathbb{K}=\mathbb{C}, V=$ any simple 2 d

$$
b_{n} \sim\left(\frac{7}{10}+\frac{1}{5}(-1)^{n}\right) \cdot n^{0} \cdot 2^{n}
$$

General groups - characteristic zero

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

SL2 - prime characteristic

- $\Gamma=$ a finite group, $\mathbb{K}=$ any ground field, $V=$ any fin $\operatorname{dim} \Gamma$-rep
- Coulembier-Etingof-Ostrik, Lacabanne-Vaz, He ~2024 This works as in char zero

SL2 - prime characteristic

- Done char zero: all groups; char p: finite groups
- Next $\Gamma=S L_{2}\left(\overline{\mathbb{F}}_{p}\right), \mathbb{K}=\overline{\mathbb{F}}_{p}$
- We will see a remarkable complexity jump

One finds fractals in asymptotic counting problems in monoidal categories defined over fields of prime characteristic

Next Two non-monoidal primers due to:
Haboush ~1980 (first)
Carter-Cline ~1976 (second)
Coulembier-Etingof-Ostrik ~2024 (put together)
After that The monoidal case due to:
Larsen, Coulembier-Etingof-Ostrik ~2024

- Done char zero: all groups; char p: finite groups
- Next $\Gamma=S L_{2}\left(\overline{\mathbb{F}}_{p}\right), \mathbb{K}=\overline{\mathbb{F}}_{p}$
- We will see a remarkable complexity jump

SL2 - prime characteristic

- For $p=3$, let $L_{-1 / 2}$ be the simple rep of highest weight $-1 / 2$
- $c a_{n}=$ the dimension of its weight space of weight $-1 / 2-n$
- $b_{n}=\sum_{k=0}^{n} c a_{k}$, which quantifies the growth of $L_{-1 / 2}$ satisfies $h(n) \cdot n^{\tau} \cdot \beta^{n}$ with $\beta=1$ Recall: if you see the above, take the sum

SL2 - prime characteristic

- New $1 \tau=\log _{3} 2=\operatorname{dim}$ of Cantor set ≈ 0.631
- New $2 h$ is insane: it approaches a periodic function akin to devil's staircase

SL2 - prime characteristic

\qquad

New $2 h$ is insane: it approaches a periodic function akin to devil's staircase

SL2 - prime characteristic

- For $p=2$, let L_{n} be the simple rep of highest weight $n \in \mathbb{N}$
- $\operatorname{dim} L_{n}=$ the dimension of it
- $b_{n}=\sum_{k=0}^{n} \operatorname{dim} L_{k}$, which quantifies the growth of L_{n} satisfies $h(n) \cdot n^{\tau} \cdot \beta^{n}$ with $\beta=1$ Recall: if you see the above, take the sum

SL2 - prime characteristic

- New $1 \tau=1+\log _{p} \frac{p+1}{2}=$ dim of Sierpinski's gasket ≈ 1.682 for $p=5$
- New $2 h$ is again insane

SL2 - prime characteristic

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\overline{\mathbb{F}}_{p}, V=\overline{\mathbb{F}}_{p}^{2}$ (vector rep), then

$$
\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

Research task Copy the sequence and put it into OEIS

SL2 - prime characteristic

Research task Copy the sequence and put it into OEIS

SL2 - prime characteristic

- New $1 \tau=1 / 2 \log _{p} \frac{p+1}{2}-1=\operatorname{dim}$ of ???? ≈-0.708 for $p=2$
- New $2 h$ is again insane

SL2 - prime characteristic

- h is really insane It has ∞ many nonzero Fourier coefficients L_{n} (highly oscillating)
- Some analytic number theory going on:
\triangleright The L_{n} involve the (Hurwitz) zeta and Gamma function
\triangleright There are functional equations akin to Mahler functions and Dirichlet's L-function

SL2 - prime ch

$$
b_{n} \sim h(n) \cdot n^{\tau} \cdot \beta^{n}
$$

Recall the char zero results:

- Theorem A The dominating growth is always the dimension (proven for all semigroup superschemes Γ, all fields, all fd reps V)
- Theorem B n^{τ} only depends on Γ (proven for all groups, characteristic zero fields, all fd reps V)
- Theorem C h takes only finitely many values (proven for all groups, characteristic zero fields, all fd reps V)

Wannabe theorem 1 in prime characteristic
Theorem B also holds (Theorem A is always true, Theorem C is false)

Wannabe theorem 2 (Last talk)	nts L_{n} (highly
Something similar works for the Hecke category	n is and Dirichlet's

Reminder: How we do not count!

- Theorem (subecp. factor) For char $\mathrm{K}-0$, the following are equiralent (i) $b_{n} \in \Theta \Theta\left(d^{2} m_{K} V Y^{\prime}\right)$
(ii) The comentes onp
- Translation Read (i) as $\mathrm{T}-0$: read (ii) as $\mathrm{r}-\mathrm{Z}^{m} \circledast$ (frite group)

- New $1 \mathrm{r}-\log _{1} 2-$ dim of Cantor set $\& 0.631$
- New 2 h is insane: it approaches a periodic function akin to devil's staicase

General groupps - characteristic zero

- Theorem A The dominating grometh is always the dimersion (proven for all semigroup superschemes r, all fiedds, al fd reps V)
- Theoram B n^{r} enly depends on Γ (proven for all groups, dlaracteristic zero elds. all fo reps V)
- Theorem C h takes only finitely many values (proven for all groups. chancterisic zeero fields, al fd reps V)

SL2 - prime characteristic

- New $1 \tau-1+\log _{p} \frac{p+1}{2}-$ dim of Serpinski's gasket ≈ 1.662 for $p=5$
- New 2 his again insano

Reminder: How we do not count!

- Question How large (dim wise) do reps of S_{0} get?

Hence, one should expect that 5 , has lagere mes and indeed
$e^{-2}(n / e)^{1 / 2}<\max \operatorname{dim}\left(S_{n}-\right.$ reps $)$

SL2 - prime characteristic

- Done ctar zero: all groups; char p: finite groups
- Next $\mathrm{r}-\mathrm{SL} L_{2}\left(\mathrm{P}_{p}\right), \mathrm{K}-\mathrm{P}_{p}$
- We will see a remarkable compleaty jump
- We will see a remarkable complevty jump

SL2 - prime characteristic

- $b_{n}-v_{0}^{\cdot v}$-number of indecompossble summands of $v \in n$ (with multipicicitis)
- Example $\mathrm{\Gamma}-\mathrm{SL}_{2}, \mathrm{~K}-\mathbb{F}_{p, v}, \mathrm{~V}-\mathrm{P}_{p}^{p}$ (vector rep), then
(1,1,1, 3, 3,9.9, 29, 29.99,99), $\quad b_{n}$ for $n=0 . \ldots, 10$.
Resarch tash Copy the sequence and put it into OEIS , wnor wo.

There is still much to do

- Theorem (subere. factor) For char $\mathrm{K}-0$, the following are equivalent (i) $b_{n} \in \Theta \Theta\left(d^{2} m_{K} V Y^{\prime}\right)$

- Translation Read (i) as $\mathrm{T}-0$; read (ii) as $\mathrm{r}-\mathrm{Z}^{n} \times$ (finite group)

- New $1 \mathrm{r}-\log _{1} 2-$ dim of Cantor set $\& 0.631$
- New 2 h is insane: it zpproaches a periodic function akin to devil's staicrase

General groups - characteristic zero

- Theorem A The dominating grometh is always the dimersion (proven for all semigroup superschemes r, all fiedds, al fd reps V)
- Theoram B n^{r} enly depends on Γ (proven for all groups, dlaracteristic zero elds. all for reps V)
- Theorem C h takes only finitely many values (proven for all groups, Chancterisic zeero fiedds, al fd reps V)

SL2 - prime characteristic

- New 1

New 2 his again insame

Reminder: How we do not count!

- Question How large (dim wise) do reps of S_{0} get?

- Hence, one should expect that S_{n} has large reps and indeed $e^{-n}(n / e)^{\lambda / 2}<$ max $\operatorname{dim}\left(S_{1}-\right.$ reps $\left.s\right)$

SL2 - prime characteristic

- Done ctar zero: all groups; char p: finite groups
- Next $\mathrm{r}-S L_{2}\left(\mathrm{P}_{p}\right), \mathrm{K}-\hat{p}_{p}$
- We will see a remarkable complesty jump

SL2 - prime characteristic

- $b_{n}-v_{0}^{\cdot v}$-number of indecompossble summands of $v \in n$ (with multipicicitis)
- Example $\mathrm{T}-\mathrm{SL}_{2}, \mathrm{~K}-\mathbb{P}_{p, 0}, \mathrm{~V}-\mathbb{F}_{p}^{2}$ (vector rep), then

$$
\{1,1,1,3,3,9,9,29,29,99,99\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

Ressarch tach Copy the sequence and put it into OEIS wan wis

Thanks for your attention!

