


Let us not count!

▶ Schur–Weyl duality relates SLβ/GLβ-reps and Sn-reps in V⊗n for V = Cβ

▶ So far We have studied bn=# inde. summands of V⊗n

▶ Task Study the Schur–Weyl dual of bn

Theorem (Schur–Weyl dual of bn)

A acts on V⊗n, bn=# inde. summands of V⊗n, B = EndA(V
⊗n)

Then bn=sum of dims of simple B-reps

Example

Total sum of dims of Sn-reps is in Ω(βn) for all β ∈ R>0

EndA(V
⊗n) is a monoid

This motivates the study of growth/bounds of dimensions of monoid reps

Adjoining identities is “free” and there is no essential difference between
semigroups and monoids

The main difference is monoids vs. groups

I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss

Monoids appear naturally in categorification

Examples of monoids

Groups

Multiplicative closed sets of matrices (these need not to be unital, but anyway)

Symmetric groups Aut({1, ..., n})

Transformation monoids End({1, ..., n})

Example

Z is a group Integers

N is a monoid Natural numbers

Example

Cn = ⟨a|an = 1⟩ is a group Cyclic group

Cn,p = ⟨a|an+p = an⟩ is a monoid Cyclic monoid

Example (now with notation)

Sn = Aut({1, ..., n}) is a group Symmetric group

Tn = End({1, ..., n}) is a monoid Transformation monoid

Finite groups are kind of random...

Monoids have almost no structure
and there are zillions of them

⇒ not clear that there is a satisfying (rep) theory of monoids
There is: Green’s cell theory (not needed today but pulls the strings in the background)
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Representation gap

▶ S = monoid, G ⊂ S = group of units

▶ S has two trivial reps , called bottom and top:

1b : S → K, s 7→
{
1 if s ∈ G ,

0 else,
1t : S → K, s 7→ 1.

▶ The name comes from the fact that simple monoid reps are partially ordered
and these are at bottom/top

Example
S is a group

⇔
S = G
⇔

1b = 1t

Example (the only monoid with one element)

S = {1} is trivial
⇒

1b = 1t is the only simple S-rep

Example (monoid 1 with two elements)

S = S0;1 = ⟨a|a2 = a⟩ is essentially trivial
⇒

1b ̸= 1t are the only simple S-reps

Example (monoid 2 with two elements)
S = ⟨a|a2 = 1⟩ (this is Z/2Z)

⇒
1b = 1t and a 7→ −1 are the only simple S-reps

gap(S) is a measure of the complexity of S

gap(S) goes under different names in the literature

In particular for S = group this is well-studied
and goes back to the very early days of rep theory

One needs lower and upper bounds for gap(S), e.g.:

A large gap(S) is what one seeks for cryptography or expander graphs

A small gap(S) is what one seeks for group/monoid cohomology

Mnemonic (not quite true but close)

Rep gap gapK(S) = smallest dim of a nontrivial simple S-rep over K

Rep gap gap∗(S) = smallest dim of a nontrivial simple S-rep over all K

Example/convention
For S = {1} we define gap(S) = 0

For S = S0;1 = {0, 1} we define gap(S) = 0

Why? These are the only monoids without any nontrivial reps

so gap(S) would be infinite, but that is silly...

Example (groups)
For S = Z/2Z we have gapC(S) = 1

For S = Sn = Aut({1, ..., n}) we have gapC(S) = 1
For S =Monster we have gapC(S) = 196883 (Griess ∼1980 and others)

For S = SL2(Fp) we have gapC(S) ≥ p−1
2

(Frobenius ∼1900)

For S = Z/2Z we have gap∗(S) = 1
For S = Sn = Aut({1, ..., n}) we have gap∗(S) = 1

For S =Monster we have gap∗(S) ≤ 196882 (Griess–Smith ∼1994)
For S = SL2(Fp) we have gap∗(S) = 2 since we can act on F2

p

Example (monoids)
For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2

Why? Well, S has only the trivial reps

But nontrivial extensions of dim 2

Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faithC(S) = n − 1 (Burnside ∼1902)
For S = Tn = End({1, ..., n}) we have faithC(S) = n (Mazorchuk–Steinberg ∼2011)

For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faith∗(S) = n − 2 (Dickson ∼1908)
For S = Tn = End({1, ..., n}) we have faith∗(S) =??

Theorem (easy)
Under some silly nontriviality assumptions on S :

gap(S) ≤ faith(S) ≤ |S |

Example (infinite group but still...)

For the braid group Brn on n strands we have
gapQ(q,t)(Brn) ≤ n − 1, faithQ(q,t)(Brn) ≤ n(n − 1)/2

dim Burau = n − 1, dim LKB = n(n − 1)/2
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For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2

Why? Well, S has only the trivial reps

But nontrivial extensions of dim 2

Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faithC(S) = n − 1 (Burnside ∼1902)
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Theorem (easy)
Under some silly nontriviality assumptions on S :
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Example (infinite group but still...)

For the braid group Brn on n strands we have
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1b, 1t

Nontrivial reps

▶ Call all S-reps 1⊕m
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b trivial

▶ Rep gap gapK(S) = smallest dim of a nontrivial S-rep over K; gap∗ = min
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For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2
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Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
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For S = Tn = End({1, ..., n}) we have faith∗(S) =??

Theorem (easy)
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Example (infinite group but still...)
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For S =Monster we have gap∗(S) ≤ 196882 (Griess–Smith ∼1994)
For S = SL2(Fp) we have gap∗(S) = 2 since we can act on F2

p

Example (monoids)
For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2

Why? Well, S has only the trivial reps

But nontrivial extensions of dim 2

Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faithC(S) = n − 1 (Burnside ∼1902)
For S = Tn = End({1, ..., n}) we have faithC(S) = n (Mazorchuk–Steinberg ∼2011)

For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faith∗(S) = n − 2 (Dickson ∼1908)
For S = Tn = End({1, ..., n}) we have faith∗(S) =??

Theorem (easy)
Under some silly nontriviality assumptions on S :

gap(S) ≤ faith(S) ≤ |S |

Example (infinite group but still...)

For the braid group Brn on n strands we have
gapQ(q,t)(Brn) ≤ n − 1, faithQ(q,t)(Brn) ≤ n(n − 1)/2

dim Burau = n − 1, dim LKB = n(n − 1)/2
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Rep gap and monoidal categories

Schur–Weyl duality

relates two objects

▶ For any monoidal category C we get a family of monoids Sn = EndC(V⊗n)

▶ Schur–Weyl duality suggests that Sn should have a big rep gap

▶ Dim simple of Sn “⇔” # of indecomposables in V⊗n and these grow fast

Now: rep gap of the
“easiest Schur–Weyl duality monoid”

The TL monoid TLn arise (kicking out scalars) under
Schur–Weyl duality as

TLn
∼= EndUq(gl2)

(
(C2

q)
⊗n

)
for −q − q−1 = 1

The TL algebra goes back to Rumer–Teller–Weyl ∼1932

It has been rediscovered many times

On can define a truncation TLk
n to get rid of the small reps
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Rep gap and monoidal categories

Connect 4 points at the bottom with 4 points at the top without crossings,
potentially turning back:

{
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↭
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↭
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Rep gap and monoidal categories

× =

= δ ·

Fix some field K and δ ∈ K, evaluate circles to δ ⇒ TL algebra TL4(δ)

The TL monoid is the non-linear version of TL4(1)
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Rep gap and monoidal categories

▶ Fact There is one simple TLn-rep for each through strand i ∈ {n, n − 2, ..., }

▶ Fact The simple dims are known recursively, see e.g. Andersen ∼2017,

Spencer ∼2020

▶ Fact The simple dims behave as above, see e.g. A computer ∼2021

Now: rep gap of the
“easiest Schur–Weyl duality monoid”

The TL monoid TLn arise (kicking out scalars) under
Schur–Weyl duality as

TLn
∼= EndUq(gl2)

(
(C2

q)
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)
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It has been rediscovered many times

On can define a truncation TLk
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Rep gap and monoidal categories
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Rep gap and monoidal categories

Summary

▶ Similar formulas hold for gap and faith but details are unknown

▶ The rep gap of monoids from monoidal categories is often large

▶ This is in particularly true for most of the “Schur–Weyl monoids” above

Now: rep gap of the
“easiest Schur–Weyl duality monoid”

The TL monoid TLn arise (kicking out scalars) under
Schur–Weyl duality as

TLn
∼= EndUq(gl2)

(
(C2

q)
⊗n

)
for −q − q−1 = 1

The TL algebra goes back to Rumer–Teller–Weyl ∼1932

It has been rediscovered many times

On can define a truncation TLk
n to get rid of the small reps
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Let us not count!

▶ Schur–Weyl duality relates SLβ/GLβ-reps and Sn-reps in V⊗n for V = Cβ

▶ So far We have studied bn=# inde. summands of V⊗n

▶ Task Study the Schur–Weyl dual of bn

Theorem (Schur–Weyl dual of bn)

A acts on V⊗n, bn=# inde. summands of V⊗n, B = EndA(V
⊗n)

Then bn=sum of dims of simple B-reps

Example

Total sum of dims of Sn-reps is in Ω(βn) for all β ∈ R>0

EndA(V
⊗n) is a monoid

This motivates the study of growth/bounds of dimensions of monoid reps

Adjoining identities is “free” and there is no essential difference between
semigroups and monoids

The main difference is monoids vs. groups

I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss

Monoids appear naturally in categorification

Examples of monoids

Groups

Multiplicative closed sets of matrices (these need not to be unital, but anyway)

Symmetric groups Aut({1, ..., n})

Transformation monoids End({1, ..., n})

Example

Z is a group Integers

N is a monoid Natural numbers

Example

Cn = ⟨a|an = 1⟩ is a group Cyclic group

Cn,p = ⟨a|an+p = an⟩ is a monoid Cyclic monoid

Example (now with notation)

Sn = Aut({1, ..., n}) is a group Symmetric group

Tn = End({1, ..., n}) is a monoid Transformation monoid

Finite groups are kind of random...

Monoids have almost no structure
and there are zillions of them

⇒ not clear that there is a satisfying (rep) theory of monoids
There is: Green’s cell theory (not needed today but pulls the strings in the background)
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▶ Associativity ⇒ reasonable theory of matrix reps

▶ Southeast corner ⇒ reasonable theory of matrix reps
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Representation gap

1b, 1t

Nontrivial reps

▶ Call all S-reps 1⊕m
t ⊕ 1⊕n

b trivial

▶ Rep gap gapK(S) = smallest dim of a nontrivial S-rep over K; gap∗ = min

of gapK(S) over all fields K; write gap(S) if the difference doesn’t matter

Example
S is a group

⇔
S = G
⇔

1b = 1t

Example (the only monoid with one element)

S = {1} is trivial
⇒

1b = 1t is the only simple S-rep

Example (monoid 1 with two elements)

S = S0;1 = ⟨a|a2 = a⟩ is essentially trivial
⇒

1b ̸= 1t are the only simple S-reps

Example (monoid 2 with two elements)
S = ⟨a|a2 = 1⟩ (this is Z/2Z)

⇒
1b = 1t and a 7→ −1 are the only simple S-reps

gap(S) is a measure of the complexity of S

gap(S) goes under different names in the literature

In particular for S = group this is well-studied
and goes back to the very early days of rep theory

One needs lower and upper bounds for gap(S), e.g.:

A large gap(S) is what one seeks for cryptography or expander graphs

A small gap(S) is what one seeks for group/monoid cohomology

Mnemonic (not quite true but close)

Rep gap gapK(S) = smallest dim of a nontrivial simple S-rep over K

Rep gap gap∗(S) = smallest dim of a nontrivial simple S-rep over all K

Example/convention
For S = {1} we define gap(S) = 0

For S = S0;1 = {0, 1} we define gap(S) = 0

Why? These are the only monoids without any nontrivial reps

so gap(S) would be infinite, but that is silly...

Example (groups)
For S = Z/2Z we have gapC(S) = 1

For S = Sn = Aut({1, ..., n}) we have gapC(S) = 1
For S =Monster we have gapC(S) = 196883 (Griess ∼1980 and others)

For S = SL2(Fp) we have gapC(S) ≥ p−1
2

(Frobenius ∼1900)

For S = Z/2Z we have gap∗(S) = 1
For S = Sn = Aut({1, ..., n}) we have gap∗(S) = 1

For S =Monster we have gap∗(S) ≤ 196882 (Griess–Smith ∼1994)
For S = SL2(Fp) we have gap∗(S) = 2 since we can act on F2

p

Example (monoids)
For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2

Why? Well, S has only the trivial reps

But nontrivial extensions of dim 2

Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faithC(S) = n − 1 (Burnside ∼1902)
For S = Tn = End({1, ..., n}) we have faithC(S) = n (Mazorchuk–Steinberg ∼2011)

For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faith∗(S) = n − 2 (Dickson ∼1908)
For S = Tn = End({1, ..., n}) we have faith∗(S) =??

Theorem (easy)
Under some silly nontriviality assumptions on S :

gap(S) ≤ faith(S) ≤ |S |

Example (infinite group but still...)

For the braid group Brn on n strands we have
gapQ(q,t)(Brn) ≤ n − 1, faithQ(q,t)(Brn) ≤ n(n − 1)/2

dim Burau = n − 1, dim LKB = n(n − 1)/2
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Rep gap and monoidal categories

× =

= δ ·

Fix some field K and δ ∈ K, evaluate circles to δ ⇒ TL algebra TL4(δ)

The TL monoid is the non-linear version of TL4(1)

Now: rep gap of the
“easiest Schur–Weyl duality monoid”

The TL monoid TLn arise (kicking out scalars) under
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∼= EndUq(gl2)

(
(C2
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It has been rediscovered many times

On can define a truncation TLk
n to get rid of the small reps
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There is still much to do...

Thanks for your attention!
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Let us not count!

▶ Schur–Weyl duality relates SLβ/GLβ-reps and Sn-reps in V⊗n for V = Cβ

▶ So far We have studied bn=# inde. summands of V⊗n

▶ Task Study the Schur–Weyl dual of bn

Theorem (Schur–Weyl dual of bn)

A acts on V⊗n, bn=# inde. summands of V⊗n, B = EndA(V
⊗n)

Then bn=sum of dims of simple B-reps

Example

Total sum of dims of Sn-reps is in Ω(βn) for all β ∈ R>0

EndA(V
⊗n) is a monoid

This motivates the study of growth/bounds of dimensions of monoid reps

Adjoining identities is “free” and there is no essential difference between
semigroups and monoids

The main difference is monoids vs. groups

I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss

Monoids appear naturally in categorification

Examples of monoids

Groups

Multiplicative closed sets of matrices (these need not to be unital, but anyway)

Symmetric groups Aut({1, ..., n})

Transformation monoids End({1, ..., n})

Example

Z is a group Integers

N is a monoid Natural numbers

Example

Cn = ⟨a|an = 1⟩ is a group Cyclic group

Cn,p = ⟨a|an+p = an⟩ is a monoid Cyclic monoid

Example (now with notation)

Sn = Aut({1, ..., n}) is a group Symmetric group

Tn = End({1, ..., n}) is a monoid Transformation monoid

Finite groups are kind of random...

Monoids have almost no structure
and there are zillions of them

⇒ not clear that there is a satisfying (rep) theory of monoids
There is: Green’s cell theory (not needed today but pulls the strings in the background)
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Representation gap

1b, 1t

Nontrivial reps

▶ Call all S-reps 1⊕m
t ⊕ 1⊕n

b trivial

▶ Rep gap gapK(S) = smallest dim of a nontrivial S-rep over K; gap∗ = min

of gapK(S) over all fields K; write gap(S) if the difference doesn’t matter

Example
S is a group

⇔
S = G
⇔

1b = 1t

Example (the only monoid with one element)

S = {1} is trivial
⇒

1b = 1t is the only simple S-rep

Example (monoid 1 with two elements)

S = S0;1 = ⟨a|a2 = a⟩ is essentially trivial
⇒

1b ̸= 1t are the only simple S-reps

Example (monoid 2 with two elements)
S = ⟨a|a2 = 1⟩ (this is Z/2Z)

⇒
1b = 1t and a 7→ −1 are the only simple S-reps

gap(S) is a measure of the complexity of S

gap(S) goes under different names in the literature

In particular for S = group this is well-studied
and goes back to the very early days of rep theory

One needs lower and upper bounds for gap(S), e.g.:

A large gap(S) is what one seeks for cryptography or expander graphs

A small gap(S) is what one seeks for group/monoid cohomology

Mnemonic (not quite true but close)

Rep gap gapK(S) = smallest dim of a nontrivial simple S-rep over K

Rep gap gap∗(S) = smallest dim of a nontrivial simple S-rep over all K

Example/convention
For S = {1} we define gap(S) = 0

For S = S0;1 = {0, 1} we define gap(S) = 0

Why? These are the only monoids without any nontrivial reps

so gap(S) would be infinite, but that is silly...

Example (groups)
For S = Z/2Z we have gapC(S) = 1

For S = Sn = Aut({1, ..., n}) we have gapC(S) = 1
For S =Monster we have gapC(S) = 196883 (Griess ∼1980 and others)

For S = SL2(Fp) we have gapC(S) ≥ p−1
2

(Frobenius ∼1900)

For S = Z/2Z we have gap∗(S) = 1
For S = Sn = Aut({1, ..., n}) we have gap∗(S) = 1

For S =Monster we have gap∗(S) ≤ 196882 (Griess–Smith ∼1994)
For S = SL2(Fp) we have gap∗(S) = 2 since we can act on F2

p

Example (monoids)
For S = S0,...,n−1,1 and n > 1 we have gap∗(S) = 2

Why? Well, S has only the trivial reps

But nontrivial extensions of dim 2

Example (monoids)
There will be some results for diagram monoids momentarily

Honorable mentions

Alternatively, and studied in group theory since the early days (under various names)
and by e.g. Mazorchuk–Steinberg ∼2011 in monoid theory

one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith(S) = smallest dim of a faithful rep

Examples
For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faithC(S) = n − 1 (Burnside ∼1902)
For S = Tn = End({1, ..., n}) we have faithC(S) = n (Mazorchuk–Steinberg ∼2011)

For S = Sn = Aut({1, ..., n}) for n ≥ 5 we have faith∗(S) = n − 2 (Dickson ∼1908)
For S = Tn = End({1, ..., n}) we have faith∗(S) =??

Theorem (easy)
Under some silly nontriviality assumptions on S :

gap(S) ≤ faith(S) ≤ |S |

Example (infinite group but still...)

For the braid group Brn on n strands we have
gapQ(q,t)(Brn) ≤ n − 1, faithQ(q,t)(Brn) ≤ n(n − 1)/2

dim Burau = n − 1, dim LKB = n(n − 1)/2
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Rep gap and monoidal categories

× =

= δ ·

Fix some field K and δ ∈ K, evaluate circles to δ ⇒ TL algebra TL4(δ)

The TL monoid is the non-linear version of TL4(1)

Now: rep gap of the
“easiest Schur–Weyl duality monoid”

The TL monoid TLn arise (kicking out scalars) under
Schur–Weyl duality as

TLn
∼= EndUq(gl2)

(
(C2

q)
⊗n

)
for −q − q−1 = 1

The TL algebra goes back to Rumer–Teller–Weyl ∼1932

It has been rediscovered many times

On can define a truncation TLk
n to get rid of the small reps
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There is still much to do...

Thanks for your attention!
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