Analytic theory of monoidal categories

Or: Strategies to avoid counting

This is part 5

Avoiding counting in general

- Reminder We analyzed $b_{n}=\#$ inde. summands of $V^{\otimes n}$ for groups
- Question What about general categories?
- Additive Krull-Schmidt are assumed to hold together with \mathbb{K}-linear

Avoiding counting in general

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

- Start Recall that dominating growth is the dimension
- Question In what generality is that true?
- Minimal assumptions A functor \mathcal{F} to vector spaces to define $\beta=\operatorname{dim}_{\mathbb{K}} \mathcal{F}(X)$

Exponential growth is scary

The "beta theorem $\beta=\operatorname{dim}_{\mathbb{K}} \mathcal{F}(X)$ " holds if X is an object in a symmetric monoidal cat with a faithful symmetric functor \mathcal{F} to vector spaces

Sun

$(\operatorname{dim} \mathbf{V})^{n}$

Avoiding count

Examples

The "beta theorem $\beta=\operatorname{dim}_{\mathbb{K}} \mathcal{F}(X)$ " applies to:
Representations of groups, monoids and semigroups
Superversions of these

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

- Question In wha What about more general categories?
- Minimal assumpt For example, the Hecke category

Avoiding counting in general

- Rabbit counting à la Fibonacci using the matrices:

$$
M=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), M^{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), M^{3}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right), M^{4}=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right), \ldots
$$

- Thus, the growth rate of the entries of M^{n} is $\sim \sqrt{5} \cdot 1=n^{0} \cdot \phi^{n}$
The golden ratio ϕ is not an integer
Thus, for a category with $X^{\otimes 2} \cong X+1$
the dominating growth of $b_{n}(X)$ is not a dimension of a space
New methods are needed
$M=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), M^{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ b_{2}\end{array}\right), M^{3}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3 \\ b_{2}\end{array}\right), M^{4}=\left(\begin{array}{ll}2 & 3 \\ 3 & 5 \\ b_{4}\end{array}\right), \ldots$

Fusion graph/matrix M

Vertices $=$ inde. objects, $Y \rightarrow Z$ if Z appears in $X \otimes Y$
No orientation $=$ means $Y \rightarrow Z$ and $Y \leftarrow Z$

The golden ratio ϕ is not an integer
Thus, for a category with $X^{\otimes 2} \cong X+1$
the dominating growth of $b_{n}(X)$ is not a dimension of a space
New methods are needed
$M=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), M^{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ b_{2}\end{array}\right), M^{3}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3 \\ b_{3}\end{array}\right), M^{4}=\left(\begin{array}{ll}2 & 3 \\ 3 & 5 \\ b_{4}\end{array}\right), \ldots$

Example

There is a category with $X^{\otimes 2} \cong X+1$ and we have seen it:

- Rabbit counting
$\operatorname{Rep}\left(\mathbb{Z} / 5 \mathbb{Z}, \overline{\mathbb{F}}_{5}\right) /$ projectives

$$
M=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

- Thus, the growth

$$
\begin{aligned}
& r^{4}=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right), . \\
& 1=n^{0} \cdot \phi^{n}
\end{aligned}
$$

Random walks and growth problems

- We randomly walk on some (connected) graph = at each step choose the next step/edge randomly but equally likely "coin flip walk"
- Question How often do we visit a vertex?
- Recurrent $:=$ We will hit the start infinitely often with $\mathrm{P}(\mathrm{rob})=1 \Leftrightarrow$ one finds home; transient $:=$ not recurrent \Leftrightarrow one moves out

Random walks and growth problems

Example

Random walks on (strongly connected) finite graphs are recurrent
From now: graphs are strongly connected

finds home; transient $:=$ not recurrent \Leftrightarrow one moves out

Random walks and growth problems

A random walk:

The distribution of how far one is : from home

- 1 d random walk $=$ take a step left / right with probability $1 / 2$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this convinces one quickly that $p_{\text {home }}=1$

Random walks and growth problems

A random walk:

The distribution of how far one is : from home

- 2 d random walk $=$ take a step left $/$ right $/$ up $/$ down with probability $1 / 4$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this gives a quite ambiguous result

Random walks and growth problems

A random walk:

- 3d random walk $=$ take a step left / right / up / down / in / out with probability $1 / 6$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this convinces one quickly that $p_{\text {home }}<1$

Random walks and growth problems

2-dimensional lattice

3-dimensional lattice

- Theorem (Pólya ~ 1921) \mathbb{Z}^{d} is recurrent/transient $\Leftrightarrow d \leq 2 / d>2$
- A drunkard will find their way home, but a drunken bird may get lost forever
- Observation Extending \mathbb{Z}^{d} by a finite graph does not change the theorem

Random walks and growth problems

Pólya ~1921

Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz.

Von

Georg Pólya in Zürich.

- Observation Extending \mathbb{Z}^{d} by a finite graph does not change the theorem

Random walks and growth problems

Call b_{n} recurrent/transient if its fusion graph is

Fusion graph/matrix M

Vertices $=$ inde. objects, $Y \rightarrow Z$ if Z appears in $X \otimes Y$ No orientation $=$ means $Y \rightarrow Z$ and $Y \leftarrow Z$

$$
b_{n}=\text { sum of unit column of } M^{n}
$$

$b_{n}=$ number of paths of length n starting at the unit

- A drunkard will find their way home, but a drunken bird may get lost forever
- Observation Extending \mathbb{Z}^{d} by a finite graph does not change the theorem

Random walks and growth problems

2-dimensional lattice

3-dimensional lattice

- Theorem (Pólya ~ 1921) $b_{n}(V)$ for V a completely reducible faithful group rep in char zero is recurrent $\Leftrightarrow \Gamma$ is virtually \mathbb{Z}^{d} for $d \in\{0,1,2\}$
- Virtually means we allow extensions by finite groups

This is transient: the number of paths moves out; here (end vertex,\#paths)

Random walks and growth problems

For what Γ and V is b_{n} recurrent/transient?

- Recurrent
(i) Arbitrary field, finite group Γ and V any Γ-rep
(ii) Arbitrary field, finite tensor cat Γ and V any object
(iii) Arbitrary field, Hecke cat Γ for a finite Coxeter group and V any object
- Transient
(i) Char. zero, any group such that $\Gamma \subset \mathrm{GL}(V)$ is not a torus of rank $0,1,2$
(ii) Some assumptions, quantum group Γ and V any nontrivial tilting rep
(iii) Char. zero, Hecke cat Γ for an affine Weyl group and V any nontrivial object

Random walks and growth problems

For what Γ and V is

- Recurrent

(i) Arbitrary field, finite group Γ and V any Γ-rep
(ii) Arbitrary field, finite tensor cat Γ and V any object
(iii) Arbitrary field, Hecke cat Γ for a finite Coxeter group and V any object

- Transient
(i) Char. zero, any group such that $\Gamma \subset \mathrm{GL}(V)$ is not a torus of rank $0,1,2$
(ii) Some assumptions, quantum group Γ and V any nontrivial tilting rep
(iii) Char. zero, Hecke cat Γ for an affine Weyl group and V any nontrivial object

Asymptotics for recurrent categories

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

- Theorem For certain recurrent problems the beta theorem is true with $\beta=$ largest eigenvalue of M and

$$
b_{n} \sim a_{n}=h(n) \cdot n^{0} \cdot \beta^{n}
$$

where $h: \mathbb{N} \rightarrow(0,1]$ is periodic of finite period (we do this in a second)

- certain $=$ some annoying assumptions that are omitted

Asymptotics for recurrent categories

Example

All recurrent problems we have seen so far are certain

- Theorem For certain recurrent problems the beta theorem is true with $\beta=$ largest eigenvalue of M and

$$
b_{n} \sim a_{n}=h(n) \cdot n^{0} \cdot \beta^{n}
$$

where $h: \mathbb{N} \rightarrow(0,1]$ is periodic of finite period (we do this in a second)

- certain $=$ some annoying assumptions that are omitted

On the next slide there is a formula of the form

We will explore the formula by examples so no need to memorize it

The take away messages are:
The formula is completely explicit and works in quite some generality specified later
It only depends on eigenvalues and eigenvectors associated to a matrix
The assumptions on the next slide are not necessary
but make the formula look nicer

Asymptotics for recurrent categories

- Take a finite based $\mathbb{R}_{\geq 0}$-algebra R with basis $C=\left\{c_{0}, \ldots, c_{r-1}, \ldots\right\}$
- Assume that R is the Grothendieck ring of our starting category
- For $a_{i} \in \mathbb{R}_{\geq 0}$, the action matrix M of $c=a_{0} \cdot c_{0}+\ldots+a_{r-1} \cdot c_{r-1} \in R$ is the matrix of left multiplication of c on C
- Assume that M has a leading eigenvalue λ of multiplicity one; all other eigenvalues of the same absolute value are $\exp (k 2 \pi i / h) \lambda$ for some h
- Denote the right and left eigenvectors of M for λ and $\exp (k 2 \pi i / h) \lambda$ by v_{i} and w_{i}, normalized such that $w_{i}^{\top} v_{i}=1$
- Let $v_{i} w_{i}^{\top}[1]$ denote taking the sum of the first column of the matrix $v_{i} w_{i}^{\top}$
- The formula $b(n) \sim a(n)$ we are looking for is $(\zeta=\exp (2 \pi i / h))$

$$
b(n) \sim\left(v_{0} w_{0}^{\top}[1] \cdot 1+v_{1} w_{1}^{\top}[1] \cdot \zeta^{n}+v_{2} w_{2}^{\top}[1] \cdot\left(\zeta^{2}\right)^{n}+\ldots+v_{h-1} w_{h-1}^{\top}[1] \cdot\left(\zeta^{h-1}\right)^{n}\right) \cdot \lambda^{n}
$$

- The variance is $\left|b_{n}-a_{n}\right| \leq\left(\lambda_{\text {sec }}\right)^{n}+n^{d}$

Asymptotics for recurrent categories

Symmetric group $S_{3}, \mathbb{K}=\mathbb{C}, V=$ standard rep
 $$
\left(\begin{array}{lll} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right)
$$

Example $\lambda=2$, others $=0,-1, v=w=1 / \sqrt{6}(1,2,1), v w^{T}=\left(\begin{array}{llll}1 / 6 & 1 / 3 & 1 / 6 \\ 1 / 3 & 2 / 3 & 1 / 3 \\ 1 / 6 & 1 / 3 & 1 / 6\end{array}\right)$ and

$$
a(n)=\frac{2}{3} \cdot 2^{n}
$$

Symmetric Group S3

Asymptotics for recurrent categories

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example $\lambda=2$, others $=-2,0,0,0, v_{\lambda}=w_{\lambda}=1 / \sqrt{8}(1,1,1,1,2)$
$v_{-2}=w_{-2}=1 / \sqrt{8}(-1,-1,-1,-1,2)$ and

$$
a(n)=\left(\frac{3}{4}+\frac{1}{4}(-1)^{n}\right) \cdot 2^{n}
$$

Dihedral group D4
Dihedral group D4

Asymptotics for recurrent categories

Dihedral group D_{4} of order $8, \mathbb{K}=\mathbb{C}, V=$ defining rotation rep

Example (general finite group, $\mathbb{K}=\mathbb{C}, V=$ any faithful G-rep)

In this case we have a general formula:

$$
a(n)=\left(\frac{1}{\# G} \sum_{g \in Z_{V}(G)}\left(\sum_{L \in \mathrm{~S}(G)} \omega_{L}(g) \operatorname{dim}_{\mathbb{C}} L\right) \cdot \omega_{V}(g)^{n}\right) \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n}
$$

$Z_{v}(G)=$ elements g acting by a scalar $w_{V}(g) ; S(G)=$ set of simples

Example (continued)

$$
\text { Symmetric group } S_{m} a(n)=\left(\sum_{k=0}^{m / 2} 1 /\left((m-2 k)!k!2^{k}\right)\right) \cdot\left(\operatorname{dim}_{\mathbb{C}} V\right)^{n}
$$

Dihedral group D_{m} of order $2 m$

$a(n)= \begin{cases}\frac{m+1}{2 m} \cdot 2^{n} & \text { if } m \text { is odd, } \\ \frac{m+2}{2 m} \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is odd, } \\ \left(\frac{(m+2)}{2 m} \cdot 1+\frac{1}{m} \cdot(-1)^{n}\right) \cdot 2^{n} & \text { if } m \text { is even and } m^{\prime} \text { is even. }\end{cases}$

Complex reflection group $G(d, 1, m)$

$$
\left\{\begin{array}{l}
d=1, \\
m=3
\end{array}: a(n)=\frac{2}{3} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=3
\end{array}: a(n)=\frac{5}{12} \cdot 3^{n}, \quad\left\{\begin{array}{l}
d=2, \\
m=4
\end{array}: a(n)=\left(\frac{19}{96} \cdot 1+\frac{1}{32} \cdot(-1)^{n}\right) \cdot 4^{n}\right.\right.\right.
$$

$$
\begin{aligned}
& \text { Weyl Group of type B3 }
\end{aligned}
$$

Asymptotics for recurrent categories

Example For the SL_{2} Verlinde category over \mathbb{C} at level k and $V=$ gen. object:
$a(n)= \begin{cases}\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}} \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is even }, \\ \left(\frac{[1]_{q}+\ldots+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot 1+\frac{[1]_{q}-[2]_{q}+\ldots-[k-1]_{q}+[k]_{q}}{[1]_{q}^{2}+\ldots+[k]_{q}^{2}} \cdot(-1)^{n}\right) \cdot(2 \cos (\pi /(k+1)))^{n} & \text { if } k \text { is odd. }\end{cases}$

Example (continued)

Here is the SL_{3} Verlinde category over \mathbb{C} at level $k=4$ and $V=$ gen. object:

$$
k=4: a(n)=\frac{1}{7}\left(2+2 \cos \left(\frac{3 \pi}{7}\right)\right) \cdot\left(1+2 \cos \left(\frac{2 \pi}{7}\right)\right)^{n}
$$

SL3 Verlinde category for $\mathrm{k}=4$

Koornwinder polynomials make their appearance

Asymptotics for recurrent categories

Example For $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), \mathbb{K}=\mathbb{F}_{p}$ and $V=\mathbb{F}_{p}^{2}$ we get:

$$
a(n)=\left(\frac{1}{2 p-2} \cdot 1+\frac{1}{2 p^{2}-2 p} \cdot(-1)^{n}\right) \cdot 2^{n}
$$

Asymptotics for recurrent categories

Example For dihedral Soergel bimodules of $D_{m}, \mathbb{K}=\mathbb{C}$ and $V=B_{s t}$ we get:

$$
a(n)=\frac{1}{2 m} \cdot 4^{n}
$$

Asymptotics for recurrent categories

Observe that the growth of $b(n)$ is always exponential

Example For

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim}_{\mathbb{K}} V
$$

$$
a(n)=\frac{1}{2 m} \cdot 4^{n}
$$

Asymptotics for recurrent categories

- The variance is given by $\left(\lambda_{\text {sec }}\right)^{n}$ (second largest EV)
- Example Above for $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right), \mathbb{K}=\mathbb{F}_{5}$ and $V=\mathbb{F}_{5}^{2}, \lambda_{\text {sec }}=$ golden ratio

Asymptotics for recurrent categories

VORLESUNGEN

ÜBER DAS IKOSAEDER

AUFLÖSUNG

GLEICHUNGEN VOM FONFTEN GRADE
von
FELIX KLEEIN, 18884
Offenbar umfasst unsere neue Gruppe von der Identität abgesehen nur Operationen von der Periode 2, und es ist zufallig, dass wir eine dieser Operationen an die Hauptaxe der Figur, die beiden anderen an die Nebenaxe geknüpft haben. Dementsprechend will ich die Gruppe mit einem besonderen Namen belegen, der nicht mehr an die Diederconfiguration erinnert, und sie als Vierergruppe benennen.

Example For the Klein four group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{K}=\overline{\mathbb{F}_{2}}$ and $V=Z_{3}=3 d$ inde. we get:

$$
b_{n} \sim 3^{n}
$$

Asymptotics for recurrent categories

- The Hecke category (finally) for a finite Coxeter group W, \mathbb{K} char zero field, $V=$ any indecomposable object, $[V]=\sum_{s \in W} m_{s} \cdot s$
- We have

$$
b_{n} \sim a_{n}=1 /|W| \cdot n^{0} \cdot\left(\sum_{s \in W} m_{s}\right)^{n}
$$

Asymptotics for recurrent categories

$$
b_{n} \sim a_{n}=1 /|W| \cdot n^{0} \cdot\left(\sum_{s \in W} m_{s}\right)^{n}
$$

Asymptotics for recurrent categories

- The Hecke category (finally) for an affine Weyl group W, \mathbb{K} char zero field, $V=$ any indecomposable object, $[V]=\sum_{s \in W} m_{s} \cdot s$
- We have

$$
b_{n} \sim a_{n}=? ? ? ? \cdot n^{-\# \text { pos. roots } / 2} \cdot\left(\sum_{s \in W} m_{s}\right)^{n}
$$

Asymptotics for recurrent categories

- The Hecke category (finally) for any other Coxeter group W, \mathbb{K} char zero field, $V=$ any indecomposable object, $[V]=\sum_{s \in W} m_{s} \cdot s$
- We have

$$
b_{n} \sim a_{n}=? ? ? \cdot n^{? ? ?} \cdot\left(\sum_{s \in W} m_{s}\right)^{n}
$$

- Rabbit counting a a la Fibonacci using the matrices.

$$
M-\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), M^{2}-\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), M^{2}-\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right), M^{H}-\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right),
$$

- Thus, the growth rate of the entriss of M^{n} is $\sim \sqrt{5} \cdot 1-n^{n}$. ${ }^{n}$ nven win

Random walks and growth problems

- Id random walk
- Question What is the probability Plome of return to the crigin (-home)?
- Plotring this comvinces one quichly that $P_{\text {taore }}-1$

Example $\lambda-2$, others $-0,-1, v-w-1 / \sqrt{6}(1,2,1), w^{\top}-\left(\begin{array}{l}1 / 6 / 1 / 21 / 4 \\ 1 / 2 / 1 / 2 \\ 1 / 6 / 1 / 1 / 8\end{array}\right)$ and

$a(n)-\frac{2}{3}: 2^{n}$

Random walks and growth problems

- Theorem (Pôlya $\sim 1921) Z^{d}$ is recurrent/transient ${ }^{\#} d \leq 2 / d>2$
- A drunkard will find their way home, but a dunnken hird may get lost forever
- Observation Extending 2^{d} by a finite graph doss not change the theorem

Asymptotics for recurrent categories

Example For the SL. ${ }_{2}$ Verrinde categoy ouer C at level k and V-gen. object.

Random walks and growth problems

- We randomly walk on some (ponnected) graph - at each step choose the next step/edge randomly but equally lisely "coin fip walk"
- Question Haw often do we visit a wertex?
- Recurrent :- We will hit the start infinitely often with $\mathrm{P}($ rob $)-1$ to one inds home, tramisant :- not recurrent to one mowes out

Random walks and growth problems

-Theorem (Pölya ~ 1921) $b_{n}(V)$ for V a completedy reducible faithful group rep in char zefo is recurrent $+\Gamma$ is virtually Z^{u} for $d \in\{0,1,2\}$

- Virtually means we allow extensions by finite groups

Asymptotics for recurrent categoric

- The Heche categony (finally) for a finite Coxeter group W, K char zero field. V - any indecomposable object, $[V]-\sum_{t \in w} m_{x}$:s
- We have

$$
b_{n} \sim a_{e}-\frac{1 /|W| \cdot n^{0}}{n=\left(\sum_{\text {ew }} m_{k}\right)^{n}}
$$

There is still much to do

- Rabbit counting à la Fibonacci using the matrices

$$
M=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), M^{2}-\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), M^{2}-\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right), M^{3}-\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right),
$$

Random walks and growth problems

- 1d random walk
- Question What is the probability Pamere of return to the crigin (-home)?
- Plotting this comvinces one quichly that plowe -1

Example $\lambda-2$, others $-0,-1, v-w-1 / \sqrt{6}(1,2,1), w^{\top}-\binom{1 / 2 / 1 / 21 / 1 / 6}{1 / 81 / 2 / 1 / 8}$ and

$a(n)-\frac{2}{3}=2$

Random walks and growth problems

- Theorem (Pölya ~ 1921) Z^{d} is recurrent/transient ${ }^{\#+} d \leqslant 2 / d>2$
- A drunkard will find their way home, but a dunnken hird may get lost forever
- Observation Extending 2^{d} by a finite graph doss not change the theorem

Asymptotics for recurrent categories

Example For the SL. 2 Verrinde category over C at level k and V-gen. object.

Random walks and growth problems

We randomity walk on some (ponnocted) graph - at each step choose the next step/edge randomly but equally Bely "coin fip walk"

- Question Haw often do we visit a wertex?
- Recurrent :- We will hit the start infinitely often with $\mathrm{P}($ rob $)-1$ to one finds home, tramisant :- not recurrent $*$ one mowes out

Random walks and growth problems

-Theorem (Pölya ~1921) $b_{n}(V)$ for V a completaly reducible faithful group rep in char zefo is recurrent $+\Gamma$ is virtually Z^{u} for $d \in\{0,1,2)$

- Virtually means we allow extensions by finite groups

Asymptotics for recurrent categoric

- The Heche category (finally) for a finite Coxeter group W, K char zero field, V - any indecomposable object, $[V]-\sum_{t \in w} m_{x}$:s
- We have

$$
b_{n} \sim a_{e}-1 /|W| \cdot n^{0} \cdot\left(\sum_{e}\left(\underline{2} m_{k}\right)^{n}\right.
$$

Thanks for your attention!

