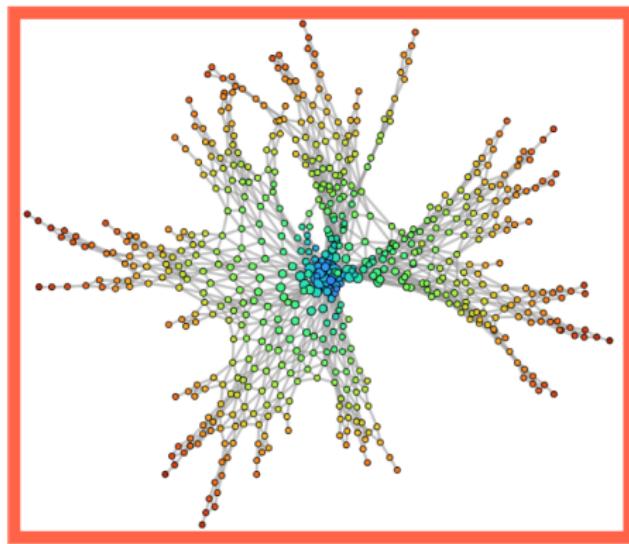


Knots as point clouds

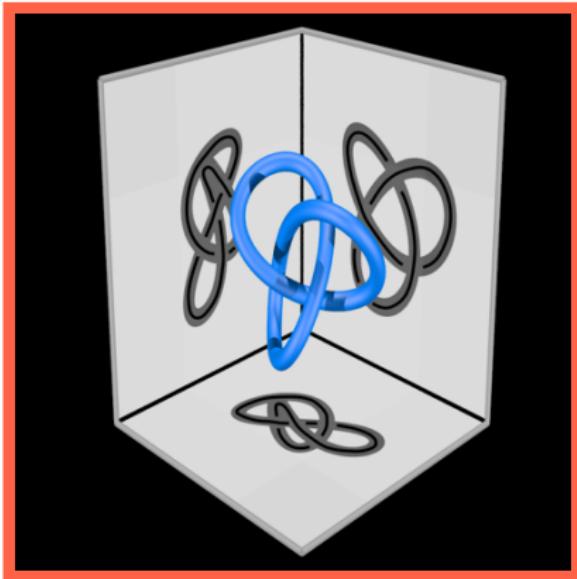
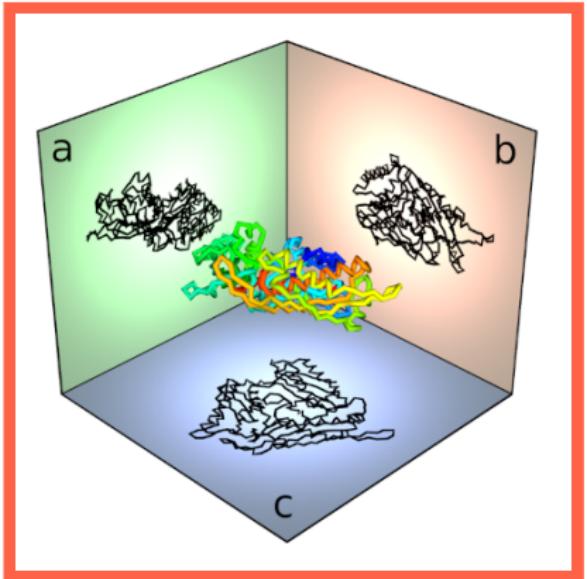
Or: Knots, data and TDA

Accept Change what you cannot change accept



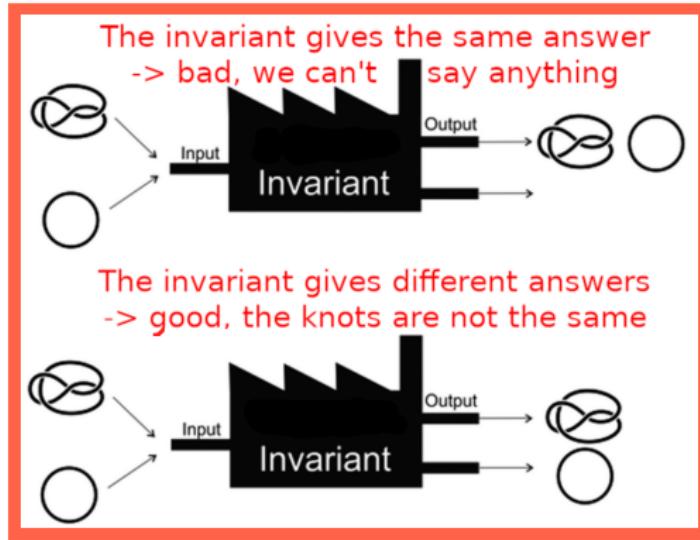
I report on work of many people (Baldwin, Dłotko, Dowlin, Gurnari, Hajij, Kelomäki, Lacabanne, Levine, Levitt, Lidman, Sazdanovic, Vaz, Zhang, ...)

Goal: Use applied topology in quantum topology



- ▶ **Knot** = closed string (a circle S^1) in three spaces; link = multiple components
- ▶ Knots are studied by projections to the plane **Shadows**
- ▶ Knots/links are the **basic building blocks** of low dimensional manifolds

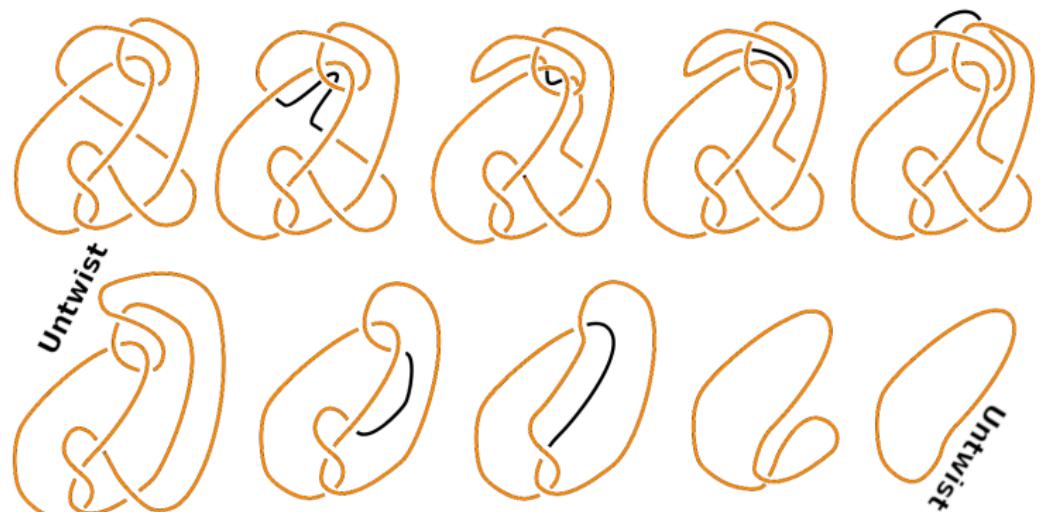
Goal: Use applied topology in quantum topology



- In math knot theory started in the early 20th century
- Topologists from ~1900-1980 studied knots from the point of view of invariants from algebraic topology
- Problem The invariants obtained are not particularly “good”

Goal: Use applied topology in quantum topology

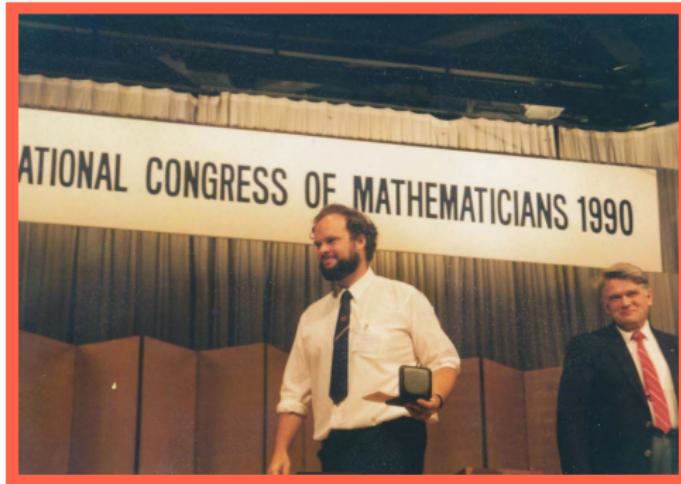
Even the unknotting problem is tricky



- In
- To
- in
- Problem

In general, knot theory was in need of new invariants since the “standard invariants from algebraic topology” (homology and friends) are really not good for knots

Goal: Use applied topology in quantum topology



- ▶ Kyoto 1990 Jones receives the fields medal (with Faddeev in the background)
- ▶ Quote “Jones discovered an astonishing relationship between von Neumann algebras and geometric topology. As a result, they found a new polynomial invariant for knots and links in 3-space.”
- ▶ Today The focus is on the quantum knot invariants à la Jones

Goal: Use applied topology in quantum topology

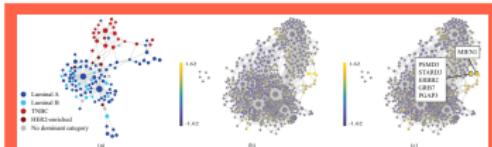
1800s–early 1900s: proto invariants and the “classical topology” backbone

Date	Invariant (family)	Type/style	What it measures / why it matters
1833	Linking number (Gauss integral)	geometric \leftrightarrow algebraic topology	First robust link invariant; counts signed linking. ETSU Faculty +1
c. 1870s	Crossing number (as a concept in tabulation)	combinatorial/ diagrammatic	Not invariant of a <i>diagram</i> but of the isotopy class via minimization; key for classification culture.
c. 1870s	Writhe (diagram quantity)	combinatorial/ diagrammatic	Not a knot invariant under all Reidemeister moves, but essential in framed/regular isotopy settings.
1890s–1905	Knot group $\pi_1(S^3 \setminus K)$ via presentations	algebraic topology	The flagship “nonabelian” invariant; Wirtinger presentation becomes standard. School of Mathe... +1
c. 1900–1910	Peripheral structure (meridian/longitude up to conjugacy)	algebraic topology	Upgrades the knot group; crucial for distinguishing knots with isomorphic groups.
c. 1910	Colorings / Fox-type counting prototypes	algebraic/combinatorial	Early forerunners of “quandle” thinking and finite-group counting invariants.

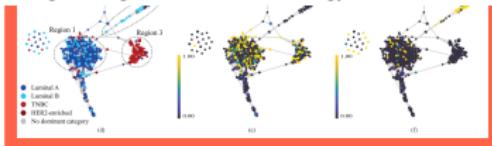
Quote: “Jones discovered an astonishing relationship between von Neumann algebras and geometric topology. As a result, they found a new polynomial invariant for knots and links in 3-space.”

- Today The focus is on the quantum knot invariants à la Jones

Goal: Use applied topology in quantum topology



Rostami, Z., Fooshee, D., Carlsson, G., & Subramaniam, S. (2025). Topological Data Analysis Reveals a Subgroup of Luminal B Breast Cancer. *IEEE Open Journal of Engineering in Medicine and Biology*, 6, 465-471.



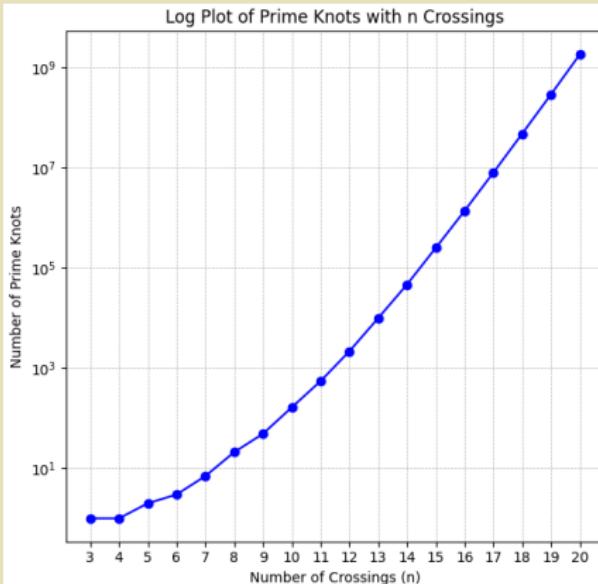
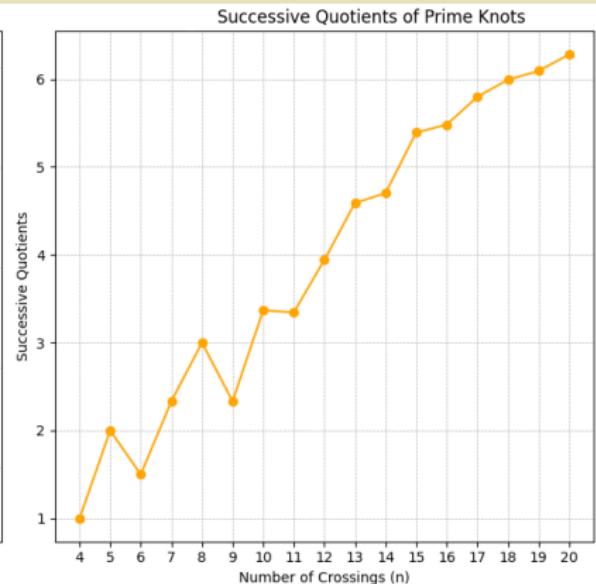
BIG DATA IN THEORETICAL MATH

This talk!

- Introduce new tools from applied algebraic topology and compare with other tools
- Focused on knot theory but the tools developed are not limited to knots or theoretical mathematics
- Use filtrations to analyze infinite data sets where representative sampling is impossible or impractical
- Analyze knot invariants and their relations

Goal: Use applied topology in quantum topology

Crucial

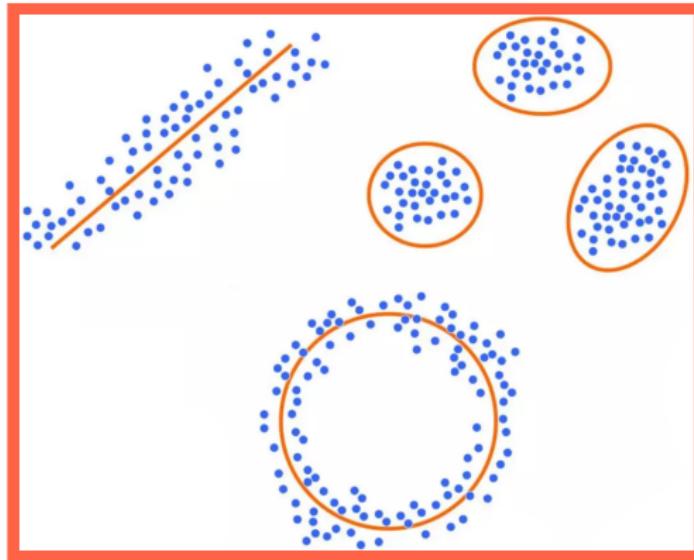


For this to work we need a lot of data; and we are lucky:

Ernst–Sumners ~1987 The number of knots grows exponential

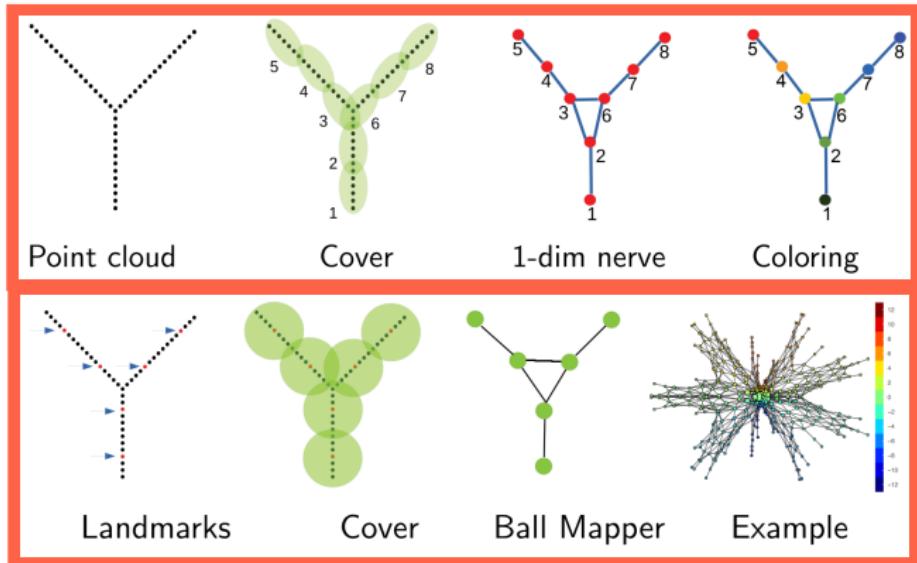
- Analyze knot invariants and their relations

Big data and quantum invariants



- ▶ TDA (topological data analysis) is the art of finding the shape of data
- ▶ Question What shape are quantum knot invariants?
- ▶ Question Can the shape measure how good they are?

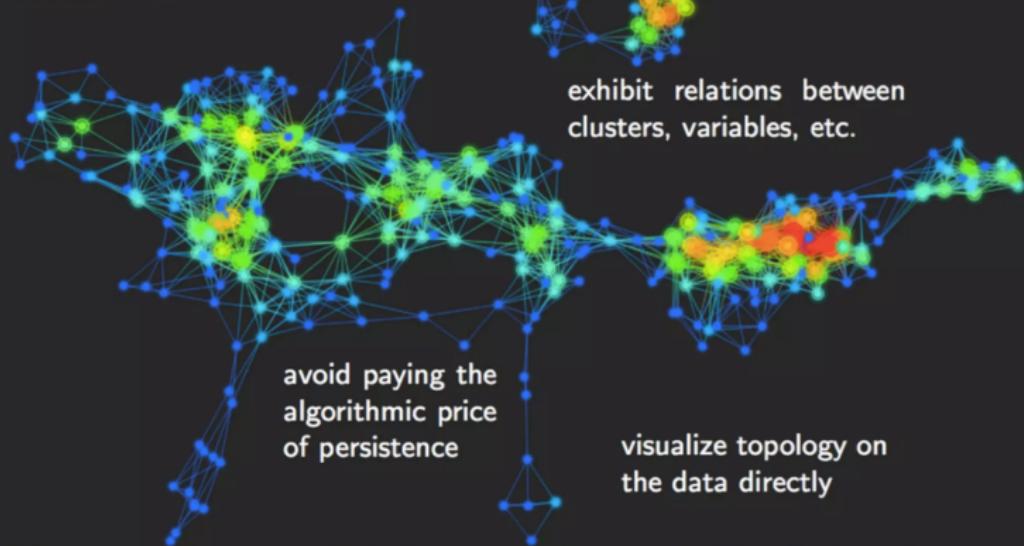
Big data and quantum invariants



- (Ball) Mapper = a way to turn point clouds into a graph
- Coloring gives additional information
- We see this in examples momentarily

Motivations

get a higher-level understanding of the structure of data



Mapper Algorithm

principle: summarize the topological structure of a map $f : X \rightarrow \mathbb{R}$ through a graph

Image source: <http://www.enseignement.polytechnique.fr/informatique/INF563/>

► We see this in examples momentarily

Big data and quantum invariants

Knots form point clouds!

	q^{-3}	q^{-2}	q^{-1}	q^0	q^1	q^2	q^3	q^4	q^5	q^6	q^7
$J(0_1)$	0	0	0	1	0	0	0	0	0	0	0
$J(\text{mir}(3_1))$	0	0	0	0	1	0	1	-1	0	0	0
$J(4_1)$	0	1	-1	1	-1	1	0	0	0	0	0
$J(\text{mir}(5_1))$	0	0	0	0	0	1	0	1	-1	1	-1
$J(\text{mir}(5_2))$	0	0	0	0	1	-1	2	-1	1	-1	0
$J(\text{mir}(6_1))$	0	1	-1	2	-2	1	-1	1	0	0	0
$J(\text{mir}(6_2))$	0	0	1	-1	2	-2	2	-2	1	0	0
$J(6_3)$	-1	2	-2	3	-2	2	-1	0	0	0	0

These are vectors in a 11d space

► Coloring gives additional information

► We see this in examples momentarily

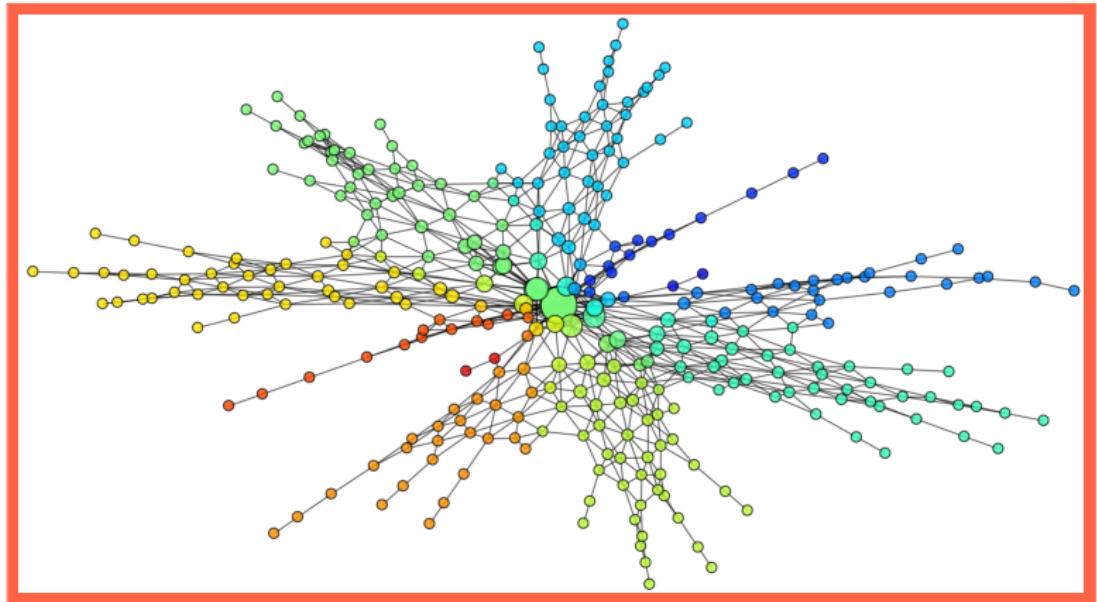
ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03664-4

Idea Brain data is high dimensional and noisy \Rightarrow Mapper helps!

Hmm... Jones polynomial data is high dimensional and noisy

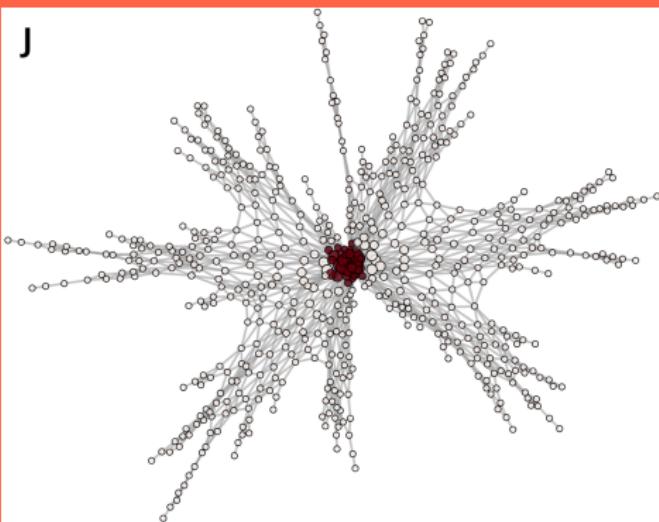
Big data and quantum invariants



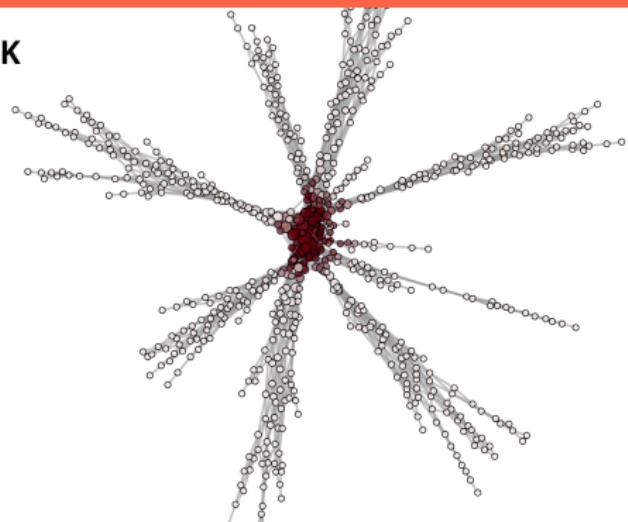
- Now live Ball mapper on knot data
- Play here <https://dioscuri-tda.org/BallMapperKnots.html>
<https://dustbringer.github.io/web-knot-invariant-comparison/>

Big data and quantum invariants

J

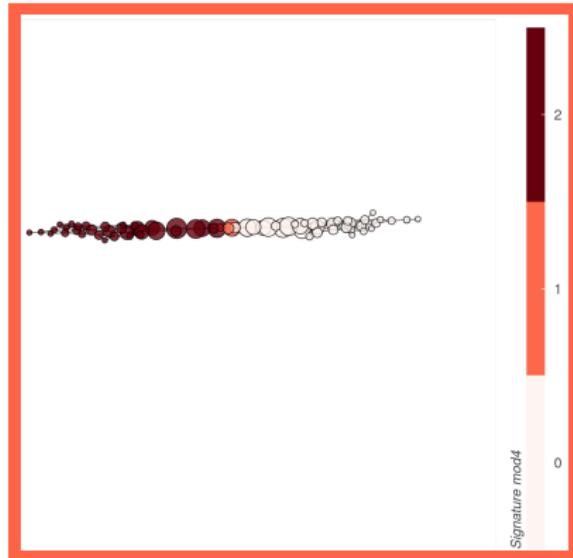


K



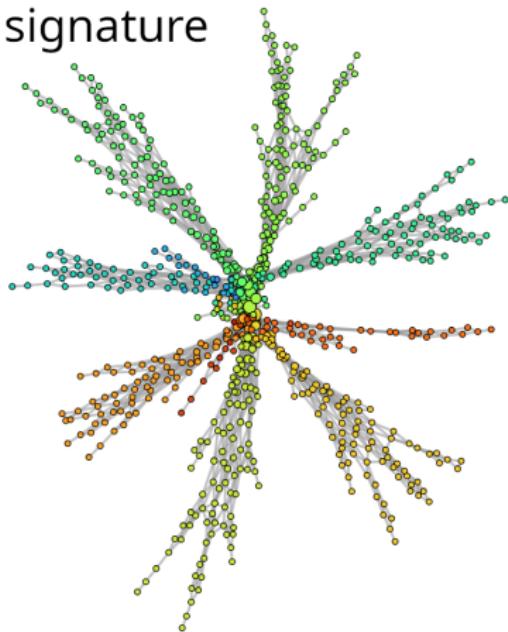
- Above Jones and its categorification (homology version)
- Categorification “=” pushing things further apart
- Comparing the invariants shows that they are related

Big data and quantum invariants

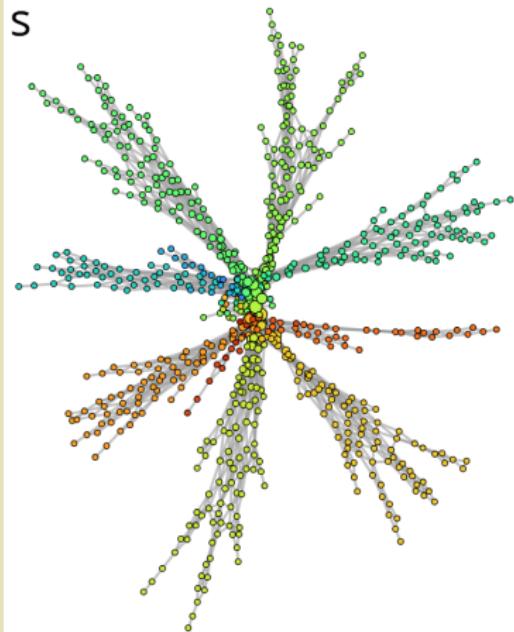


- ▶ Above Coloring of the Alexander invariant with the signature mode 4
- ▶ Signature = a traditional knot invariant (from homology)
- ▶ The eye catching conjecture is then easy to prove

signature



S

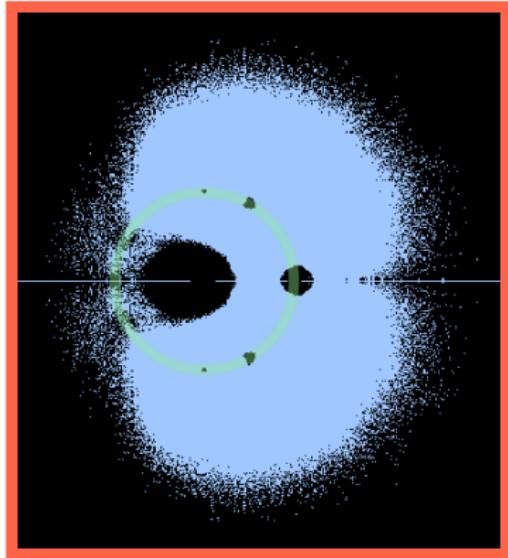
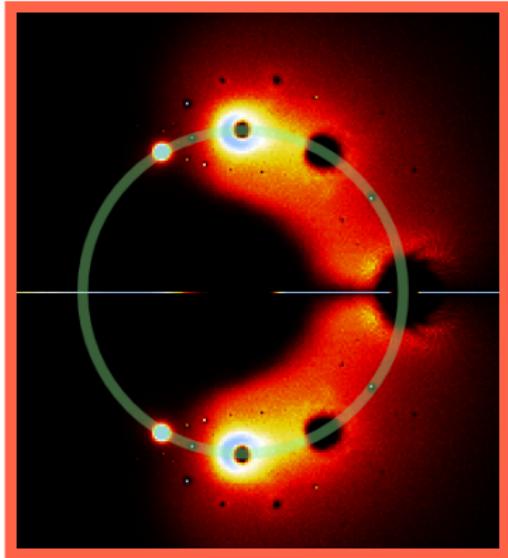


- ▶ A
- ▶ S
- ▶ The eye catching conjecture is then

Not quite, but we were able to predict the correct statement

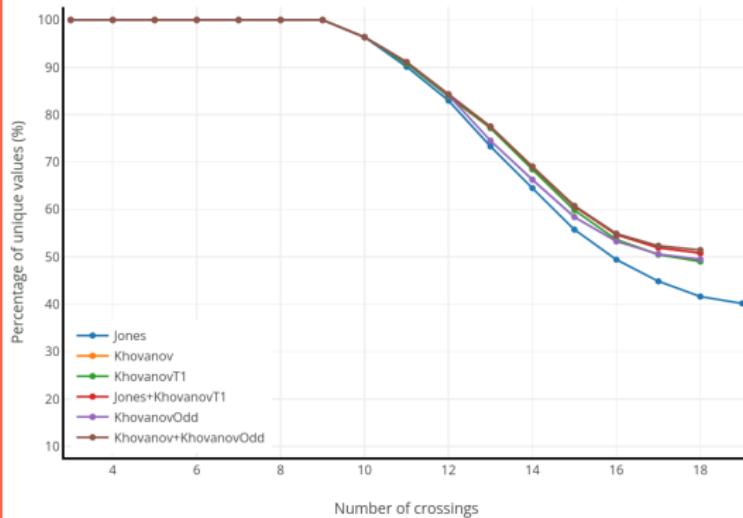
without knowing that this is true (or even what the invariants are)!

Big data and quantum invariants



- ▶ Above The roots of the Jones polynomials
- ▶ This is a very specific distribution
- ▶ Another task Compare the distribution of the polynomials

Big data and quantum invariants

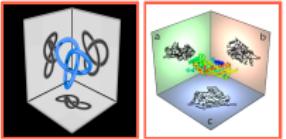


In Q3 2025, Restech provided over **18 million core-hours** of compute time through our **Katana Compute Cluster**, and your account was among the most active, with a total of **1,030,265 core-hours** consumed. The estimated/reference value is approximately **\$41,211**.

115 years
of computation
in just one Q

- Above The percentage of detectable knots (with Jones & friends)
- There are many more things on the website (the dataset is 5TB+)
- Play here <https://dustbringer.github.io/web-knot-invariant-comparison/>

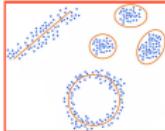
Goal: Use applied topology in quantum topology



- ▶ **Knot** = closed string (a circle S^1) in three spaces; link = multiple components
- ▶ Knots are studied by projections to the plane. **Shadow**
- ▶ Knots/links are the **basic building blocks** of low dimensional manifolds.

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

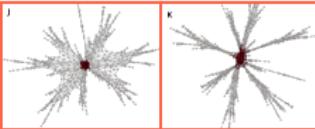
Big data and quantum invariants



- ▶ **TDA** (topological data analysis) is the art of finding the shape of data
- ▶ **Question** What shape are quantum knot invariants?
- ▶ **Question** Can the shape measure how good they are?

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

Big data and quantum invariants



- ▶ **Above** Jones and its categorification (homology version)
- ▶ **Categorification** “-” pushing things further apart
- ▶ **Comparing** the invariants shows that they are related

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

Goal: Use applied topology in quantum topology

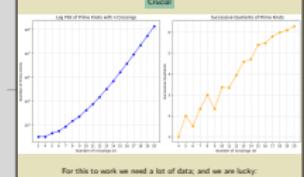
- ▶ **Kyoto 1990** Jones receives the fields medal (with Faddeev in the background)

- ▶ **Question** Jones discovered an astonishing relationship between Neumann algebras and geometric topology. As a result, they found a new polynomial invariant for knots and links in 3-spaces.

- ▶ **Today** The focus is on the quantum knot invariants à la Jones

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

Goal: Use applied topology in quantum topology



Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

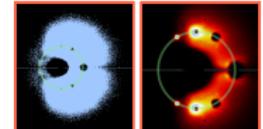
Big data and quantum invariants



- ▶ **Now live** Ball mapper on knot data
- ▶ **Play here** <https://discucci-tda.org/BallMapperKnots.html>
<https://dusbringer.github.io/web-knot-invariant-comparison/>

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

Big data and quantum invariants

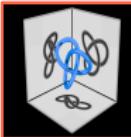
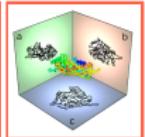


- ▶ **Above** The roots of the Jones polynomials
- ▶ **This is** a **very specific** distribution
- ▶ **Another task** Compare the distribution of the polynomials

Knots as point clouds Dr. Maria, Alex and TDA January 2026 1 / 4

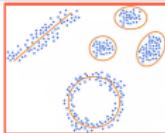
There is still much to do...

Goal: Use applied topology in quantum topology



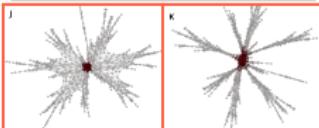
- ▶ **Knot** = closed string (a circle S^1) in three spaces; link = multiple components
- ▶ Knots are studied by projections to the plane **Shadow**
- ▶ Knots/links are the **basic building blocks** of low dimensional manifolds

Big data and quantum invariants



- ▶ **TDA (topological data analysis)** is the art of finding the shape of data
- ▶ **Question** What shape are quantum knot invariants?
- ▶ **Question** Can the shape measure how good they are?

Big data and quantum invariants



- ▶ **Above** Jones and its categorification (homology version)
- ▶ **Categorification** “-” pushing things further apart
- ▶ **Comparing** the invariants shows that they are related

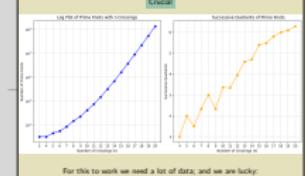
Goal: Use applied topology in quantum topology

- ▶ **Kyoto 1998** Jones receives the fields medal (with Faddeev in the background)

- ▶ **Question** Jones discovered an astonishing relationship between Neumann algebras and geometric topology. As a result, they found a new polynomial invariant for knots and links in 3-spaces

- ▶ **Today** The focus is on the quantum knot invariants à la Jones

Goal: Use applied topology in quantum topology

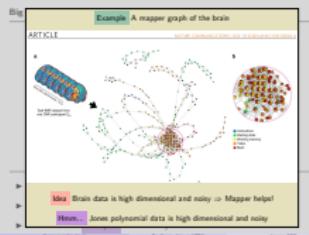


For this to work we need a lot of data; and we are lucky:

Ernst Sauer = 1987 The number of knots grows exponential

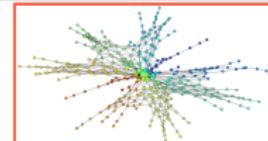
- ▶ **Analyze knot invariants and knot relations**

Big data and quantum invariants



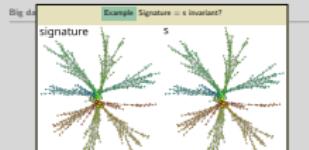
- ▶ **Mea** Brain data is high dimensional and noisy \Rightarrow Mapper helps!
- ▶ **Mem** Jones polynomial data is high dimensional and noisy

Big data and quantum invariants



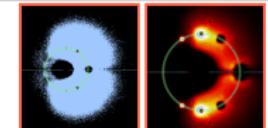
- ▶ **Now live** Ball mapper on knot data
- ▶ **Play here** <https://discucci-tda.org/BallMapperKnots.html>
- ▶ <https://dusbringer.github.io/web-knot-invariant-comparison/>

Big data and quantum invariants



- ▶ **signature** \Rightarrow **ϵ invariant?**
- ▶ **Not quite, but we were able to predict the correct statement**
- ▶ **without knowing** that this is true (or even what the invariants are!)
- ▶ **The** ϵ invariant is a **signature** of the knot

Big data and quantum invariants



- ▶ **Above** The roots of the Jones polynomials
- ▶ **This is** a **very specific** distribution
- ▶ **Another task** Compare the distribution of the polynomials

Thanks for your attention!