Super -Howe duality and web categories

  1. Title: Super -Howe duality and web categories
  2. Authors: Daniel Tubbenhauer, Pedro Vaz and Paul Wedrich
  3. Status: Algebr. Geom. Topol. 17-6 (2017), 3703-3749. Last update: Tue, 21 Nov 2017 19:09:56 GMT
  4. ArXiv link:
  5. ArXiv version = 0.99 published version
  6. LaTex Beamer presentation: Slides1, Slides2, Slides3, Slides4, Slides5, Slides6
  7. Poster: Poster


We use super -Howe duality to provide diagrammatic presentations of an idempotented form of the Hecke algebra and of categories of -modules (and more generally -modules) whose objects are tensor generated by exterior and symmetric powers of the vector representations. As an application, we give a representation theoretic explanation and a diagrammatic version of a known symmetry of colored HOMFLY-PT polynomials.

A few extra words

We discuss a machine that “takes dualities and produces diagrammatic presentations of the related representation theoretical categories”. Specifically, we feed the machine with super -Howe duality between the superalgebra and .
We construct diagrammatic presentations of an idempotented form of the Iwahori-Hecke algebra as well as of categories of -modules by using the “green-red” web categories and . Morphisms in these -linear categories are combinations of planar, upwards oriented, trivalent graphs with edges labeled by positive integers and colored black, green or red modulo local relations.
An example of a green-red web is:

A very similar approach works for the corresponding categories of -modules as well as we show in an extra section.
  1. I am still a fool.
  2. My paper got accepted.
  3. The arXiv version of this paper was updated.
  4. My paper got accepted.
  5. The arXiv version of this paper was updated.

"There are two ways to do mathematics. The first is to be smarter than everybody else. The second way is to be stupider than everybody else - but persistent." - based on a quotation from Raoul Bott.

Upcoming event where you can meet me: Visit Faro Click
Last update: 20.01.2018 or later · E-Mailemail